Properties

Label 8.8.151939915084881.1
Degree $8$
Signature $[8, 0]$
Discriminant $1.519\times 10^{14}$
Root discriminant \(59.25\)
Ramified primes $3,7,11$
Class number $1$
Class group trivial
Galois group $Q_8$ (as 8T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823)
 
gp: K = bnfinit(y^8 - 3*y^7 - 62*y^6 + 66*y^5 + 1125*y^4 + 264*y^3 - 4982*y^2 - 4245*y + 823, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823)
 

\( x^{8} - 3x^{7} - 62x^{6} + 66x^{5} + 1125x^{4} + 264x^{3} - 4982x^{2} - 4245x + 823 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(151939915084881\) \(\medspace = 3^{6}\cdot 7^{6}\cdot 11^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{3/4}7^{3/4}11^{3/4}\approx 59.252814612259755$
Ramified primes:   \(3\), \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2353099898}a^{7}+\frac{407547641}{2353099898}a^{6}+\frac{14549161}{35120894}a^{5}-\frac{521753154}{1176549949}a^{4}-\frac{402984125}{1176549949}a^{3}-\frac{698086745}{2353099898}a^{2}-\frac{219533267}{2353099898}a-\frac{199951589}{2353099898}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2771541}{1176549949}a^{7}-\frac{16553179}{1176549949}a^{6}-\frac{1647377}{17560447}a^{5}+\frac{445604385}{1176549949}a^{4}+\frac{1329149119}{1176549949}a^{3}-\frac{2001340842}{1176549949}a^{2}-\frac{3233178638}{1176549949}a+\frac{2176949433}{1176549949}$, $\frac{2693101}{1176549949}a^{7}-\frac{14848940}{1176549949}a^{6}-\frac{1946134}{17560447}a^{5}+\frac{500451975}{1176549949}a^{4}+\frac{1920269502}{1176549949}a^{3}-\frac{4241339349}{1176549949}a^{2}-\frac{6558418569}{1176549949}a+\frac{8851520168}{1176549949}$, $\frac{3959654}{1176549949}a^{7}-\frac{27322543}{1176549949}a^{6}-\frac{1779362}{17560447}a^{5}+\frac{662845719}{1176549949}a^{4}+\frac{1035178530}{1176549949}a^{3}-\frac{2581305324}{1176549949}a^{2}-\frac{3026890050}{1176549949}a+\frac{177640211}{1176549949}$, $\frac{13503205}{2353099898}a^{7}-\frac{93962991}{2353099898}a^{6}-\frac{6923015}{35120894}a^{5}+\frac{1307546494}{1176549949}a^{4}+\frac{2735552794}{1176549949}a^{3}-\frac{14948424319}{2353099898}a^{2}-\frac{21578417989}{2353099898}a+\frac{4235520517}{2353099898}$, $\frac{10722247}{2353099898}a^{7}-\frac{47611471}{2353099898}a^{6}-\frac{8117281}{35120894}a^{5}+\frac{573333521}{1176549949}a^{4}+\frac{4363722758}{1176549949}a^{3}-\frac{683271385}{2353099898}a^{2}-\frac{37023523589}{2353099898}a-\frac{32773732173}{2353099898}$, $\frac{1304995}{1176549949}a^{7}-\frac{5179165}{1176549949}a^{6}-\frac{1223016}{17560447}a^{5}+\frac{163412763}{1176549949}a^{4}+\frac{1702899392}{1176549949}a^{3}-\frac{615930422}{1176549949}a^{2}-\frac{11668686655}{1176549949}a-\frac{11165147376}{1176549949}$, $\frac{4552052}{1176549949}a^{7}-\frac{22524123}{1176549949}a^{6}-\frac{3574695}{17560447}a^{5}+\frac{721703225}{1176549949}a^{4}+\frac{3967168669}{1176549949}a^{3}-\frac{4584395722}{1176549949}a^{2}-\frac{15912081091}{1176549949}a+\frac{1951985211}{1176549949}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17804.5169355 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 17804.5169355 \cdot 1}{2\cdot\sqrt{151939915084881}}\cr\approx \mathstrut & 0.184886084479 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 62*x^6 + 66*x^5 + 1125*x^4 + 264*x^3 - 4982*x^2 - 4245*x + 823);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$Q_8$ (as 8T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 8
The 5 conjugacy class representatives for $Q_8$
Character table for $Q_8$

Intermediate fields

\(\Q(\sqrt{33}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{21}, \sqrt{33})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}$ R ${\href{/padicField/5.4.0.1}{4} }^{2}$ R R ${\href{/padicField/13.4.0.1}{4} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{2}$ ${\href{/padicField/37.1.0.1}{1} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.8.6.1$x^{8} + 9$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.8.6.1$x^{8} + 14 x^{4} - 245$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
\(11\) Copy content Toggle raw display 11.8.6.1$x^{8} - 110 x^{4} - 16819$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.33.2t1.a.a$1$ $ 3 \cdot 11 $ \(\Q(\sqrt{33}) \) $C_2$ (as 2T1) $1$ $1$
* 1.21.2t1.a.a$1$ $ 3 \cdot 7 $ \(\Q(\sqrt{21}) \) $C_2$ (as 2T1) $1$ $1$
* 1.77.2t1.a.a$1$ $ 7 \cdot 11 $ \(\Q(\sqrt{77}) \) $C_2$ (as 2T1) $1$ $1$
*2 2.53361.8t5.a.a$2$ $ 3^{2} \cdot 7^{2} \cdot 11^{2}$ 8.8.151939915084881.1 $Q_8$ (as 8T5) $-1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.