magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 8, 6, -21, -6, 17, -1, -4, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 - x^6 + 17*x^5 - 6*x^4 - 21*x^3 + 6*x^2 + 8*x + 1)
gp: K = bnfinit(x^8 - 4*x^7 - x^6 + 17*x^5 - 6*x^4 - 21*x^3 + 6*x^2 + 8*x + 1, 1)
Normalized defining polynomial
\( x^{8} - 4 x^{7} - x^{6} + 17 x^{5} - 6 x^{4} - 21 x^{3} + 6 x^{2} + 8 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1292203125=3^{4}\cdot 5^{6}\cdot 1021\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 1021$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53.9529294588 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 8T27):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $((C_8 : C_2):C_2):C_2$ |
| Character table for $((C_8 : C_2):C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 1021 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.5_1021.2t1.1c1 | $1$ | $ 5 \cdot 1021 $ | $x^{2} - x - 1276$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.1021.2t1.1c1 | $1$ | $ 1021 $ | $x^{2} - x - 255$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3_5_1021.4t1.1c1 | $1$ | $ 3 \cdot 5 \cdot 1021 $ | $x^{4} - x^{3} - 3829 x^{2} + 3829 x + 2929951$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| * | 1.3_5.4t1.1c1 | $1$ | $ 3 \cdot 5 $ | $x^{4} - x^{3} - 4 x^{2} + 4 x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.3_5.4t1.1c2 | $1$ | $ 3 \cdot 5 $ | $x^{4} - x^{3} - 4 x^{2} + 4 x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ |
| 1.3_5_1021.4t1.1c2 | $1$ | $ 3 \cdot 5 \cdot 1021 $ | $x^{4} - x^{3} - 3829 x^{2} + 3829 x + 2929951$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 2.3e2_5e2_1021.4t3.1c1 | $2$ | $ 3^{2} \cdot 5^{2} \cdot 1021 $ | $x^{4} - 2 x^{3} - 216 x^{2} + 217 x + 286$ | $D_{4}$ (as 4T3) | $1$ | $2$ | |
| 2.5_1021.4t3.2c1 | $2$ | $ 5 \cdot 1021 $ | $x^{4} - x^{3} - 17 x^{2} + 3 x + 59$ | $D_{4}$ (as 4T3) | $1$ | $2$ | |
| 4.3e2_5e3_1021e3.8t27.1c1 | $4$ | $ 3^{2} \cdot 5^{3} \cdot 1021^{3}$ | $x^{8} - 4 x^{7} - x^{6} + 17 x^{5} - 6 x^{4} - 21 x^{3} + 6 x^{2} + 8 x + 1$ | $((C_8 : C_2):C_2):C_2$ (as 8T27) | $1$ | $4$ | |
| * | 4.3e2_5e3_1021.8t27.1c1 | $4$ | $ 3^{2} \cdot 5^{3} \cdot 1021 $ | $x^{8} - 4 x^{7} - x^{6} + 17 x^{5} - 6 x^{4} - 21 x^{3} + 6 x^{2} + 8 x + 1$ | $((C_8 : C_2):C_2):C_2$ (as 8T27) | $1$ | $4$ |
| 4.3e2_5e3_1021e2.8t21.2c1 | $4$ | $ 3^{2} \cdot 5^{3} \cdot 1021^{2}$ | $x^{8} - 59 x^{6} + 705 x^{4} - 2655 x^{2} + 2025$ | $C_2^3 : C_4 $ | $1$ | $4$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.