Normalized defining polynomial
\( x^{8} - x^{7} - 136x^{6} - 94x^{5} + 5029x^{4} + 6616x^{3} - 37504x^{2} + 14104x + 1360 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(12696463968316569\)
\(\medspace = 3^{6}\cdot 7^{6}\cdot 23^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(103.03\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(7\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{10}a^{5}-\frac{1}{2}a^{4}-\frac{1}{10}a$, $\frac{1}{15100}a^{6}+\frac{219}{15100}a^{5}-\frac{303}{755}a^{4}+\frac{23}{1510}a^{3}-\frac{831}{15100}a^{2}+\frac{869}{3775}a-\frac{248}{755}$, $\frac{1}{2506600}a^{7}-\frac{9}{501320}a^{6}+\frac{7493}{313325}a^{5}+\frac{5987}{250660}a^{4}+\frac{1221949}{2506600}a^{3}-\frac{14527}{125330}a^{2}-\frac{110611}{626650}a+\frac{21411}{62665}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $5$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{389}{1253300}a^{7}-\frac{577}{626650}a^{6}-\frac{9373}{250660}a^{5}+\frac{1351}{62665}a^{4}+\frac{1591591}{1253300}a^{3}+\frac{1228859}{1253300}a^{2}-\frac{1062409}{125330}a-\frac{11124}{12533}$, $\frac{121}{125330}a^{7}-\frac{2117}{313325}a^{6}-\frac{57751}{626650}a^{5}+\frac{29314}{62665}a^{4}+\frac{54407}{25066}a^{3}-\frac{4380621}{626650}a^{2}+\frac{1056523}{313325}a-\frac{7841}{62665}$, $\frac{327389}{2506600}a^{7}-\frac{2227227}{2506600}a^{6}-\frac{15527141}{1253300}a^{5}+\frac{2917133}{50132}a^{4}+\frac{747411701}{2506600}a^{3}-\frac{970640339}{1253300}a^{2}+\frac{36000274}{313325}a+\frac{887242}{62665}$, $\frac{4877}{2506600}a^{7}+\frac{209811}{2506600}a^{6}-\frac{415837}{626650}a^{5}-\frac{2340737}{250660}a^{4}+\frac{74924553}{2506600}a^{3}+\frac{81587108}{313325}a^{2}-\frac{73790133}{626650}a-\frac{695397}{62665}$, $\frac{168487}{1253300}a^{7}+\frac{155179}{1253300}a^{6}-\frac{5632684}{313325}a^{5}-\frac{596101}{12533}a^{4}+\frac{724676583}{1253300}a^{3}+\frac{1265374153}{626650}a^{2}-\frac{625812117}{626650}a-\frac{5621323}{62665}$, $\frac{247}{50132}a^{7}-\frac{29751}{626650}a^{6}-\frac{624313}{1253300}a^{5}+\frac{387807}{125330}a^{4}+\frac{3160493}{250660}a^{3}-\frac{50483663}{1253300}a^{2}+\frac{4303312}{313325}a+\frac{90936}{62665}$, $\frac{28257}{1253300}a^{7}-\frac{39469}{626650}a^{6}-\frac{3508989}{1253300}a^{5}+\frac{106651}{62665}a^{4}+\frac{120346203}{1253300}a^{3}+\frac{81077983}{1253300}a^{2}-\frac{387866473}{626650}a-\frac{3103177}{62665}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1372302.9479 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 1372302.9479 \cdot 1}{2\cdot\sqrt{12696463968316569}}\cr\approx \mathstrut & 1.5589011365 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{21}) \), \(\Q(\sqrt{69}) \), \(\Q(\sqrt{161}) \), \(\Q(\sqrt{21}, \sqrt{69})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/5.1.0.1}{1} }^{8}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.1.0.1}{1} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.6.1 | $x^{8} + 9$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(7\)
| 7.8.6.1 | $x^{8} + 14 x^{4} - 245$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(23\)
| 23.8.6.1 | $x^{8} - 138 x^{4} - 217948$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.69.2t1.a.a | $1$ | $ 3 \cdot 23 $ | \(\Q(\sqrt{69}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.161.2t1.a.a | $1$ | $ 7 \cdot 23 $ | \(\Q(\sqrt{161}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.21.2t1.a.a | $1$ | $ 3 \cdot 7 $ | \(\Q(\sqrt{21}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.233289.8t5.a.a | $2$ | $ 3^{2} \cdot 7^{2} \cdot 23^{2}$ | 8.8.12696463968316569.1 | $Q_8$ (as 8T5) | $-1$ | $2$ |