Properties

Label 8.8.116507435287321.1
Degree $8$
Signature $[8, 0]$
Discriminant $1.165\times 10^{14}$
Root discriminant \(57.32\)
Ramified primes $13,17$
Class number $2$
Class group [2]
Galois group $Q_8$ (as 8T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1)
 
gp: K = bnfinit(y^8 - 3*y^7 - 67*y^6 - 16*y^5 + 863*y^4 + 1276*y^3 + 392*y^2 - 54*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1)
 

\( x^{8} - 3x^{7} - 67x^{6} - 16x^{5} + 863x^{4} + 1276x^{3} + 392x^{2} - 54x + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(116507435287321\) \(\medspace = 13^{6}\cdot 17^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(57.32\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{3/4}17^{3/4}\approx 57.318419318377835$
Ramified primes:   \(13\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{8232013}a^{7}+\frac{3019361}{8232013}a^{6}-\frac{1122526}{8232013}a^{5}+\frac{2726932}{8232013}a^{4}-\frac{1466398}{8232013}a^{3}-\frac{1137546}{8232013}a^{2}+\frac{2039677}{8232013}a+\frac{1971827}{8232013}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{218396}{8232013}a^{7}-\frac{804396}{8232013}a^{6}-\frac{14073169}{8232013}a^{5}+\frac{6060587}{8232013}a^{4}+\frac{183880430}{8232013}a^{3}+\frac{154832358}{8232013}a^{2}-\frac{18085403}{8232013}a-\frac{2166577}{8232013}$, $\frac{885973}{8232013}a^{7}-\frac{2621227}{8232013}a^{6}-\frac{59397333}{8232013}a^{5}-\frac{17138521}{8232013}a^{4}+\frac{761065628}{8232013}a^{3}+\frac{1171023165}{8232013}a^{2}+\frac{427089624}{8232013}a-\frac{12316189}{8232013}$, $\frac{43328}{8232013}a^{7}-\frac{277188}{8232013}a^{6}-\frac{2073724}{8232013}a^{5}+\frac{6659120}{8232013}a^{4}+\frac{23279829}{8232013}a^{3}-\frac{27227296}{8232013}a^{2}-\frac{11998525}{8232013}a+\frac{11721355}{8232013}$, $\frac{2711054}{8232013}a^{7}-\frac{7818303}{8232013}a^{6}-\frac{182676824}{8232013}a^{5}-\frac{64008582}{8232013}a^{4}+\frac{2339766290}{8232013}a^{3}+\frac{3723034569}{8232013}a^{2}+\frac{1400303304}{8232013}a-\frac{32750373}{8232013}$, $\frac{885973}{8232013}a^{7}-\frac{2621227}{8232013}a^{6}-\frac{59397333}{8232013}a^{5}-\frac{17138521}{8232013}a^{4}+\frac{761065628}{8232013}a^{3}+\frac{1171023165}{8232013}a^{2}+\frac{418857611}{8232013}a-\frac{20548202}{8232013}$, $\frac{149208}{8232013}a^{7}-\frac{559363}{8232013}a^{6}-\frac{9554923}{8232013}a^{5}+\frac{4595318}{8232013}a^{4}+\frac{123840938}{8232013}a^{3}+\frac{103696635}{8232013}a^{2}+\frac{15069232}{8232013}a+\frac{218396}{8232013}$, $\frac{1806}{6731}a^{7}-\frac{5602}{6731}a^{6}-\frac{120148}{6731}a^{5}-\frac{18116}{6731}a^{4}+\frac{1545292}{6731}a^{3}+\frac{2168202}{6731}a^{2}+\frac{668854}{6731}a-\frac{16953}{6731}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7915.1159478 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 7915.1159478 \cdot 2}{2\cdot\sqrt{116507435287321}}\cr\approx \mathstrut & 0.18772427055 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 67*x^6 - 16*x^5 + 863*x^4 + 1276*x^3 + 392*x^2 - 54*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$Q_8$ (as 8T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 8
The 5 conjugacy class representatives for $Q_8$
Character table for $Q_8$

Intermediate fields

\(\Q(\sqrt{221}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{17})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}$ ${\href{/padicField/3.4.0.1}{4} }^{2}$ ${\href{/padicField/5.4.0.1}{4} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{2}$ R R ${\href{/padicField/19.4.0.1}{4} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.1.0.1}{1} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.4.3.1$x^{4} + 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.1$x^{4} + 52$$4$$1$$3$$C_4$$[\ ]_{4}$
\(17\) Copy content Toggle raw display 17.4.3.2$x^{4} + 34$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.3.2$x^{4} + 34$$4$$1$$3$$C_4$$[\ ]_{4}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.221.2t1.a.a$1$ $ 13 \cdot 17 $ \(\Q(\sqrt{221}) \) $C_2$ (as 2T1) $1$ $1$
* 1.17.2t1.a.a$1$ $ 17 $ \(\Q(\sqrt{17}) \) $C_2$ (as 2T1) $1$ $1$
* 1.13.2t1.a.a$1$ $ 13 $ \(\Q(\sqrt{13}) \) $C_2$ (as 2T1) $1$ $1$
*2 2.48841.8t5.a.a$2$ $ 13^{2} \cdot 17^{2}$ 8.8.116507435287321.1 $Q_8$ (as 8T5) $-1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.