Normalized defining polynomial
\( x^{8} - 3 x^{7} - 20 x^{6} + 49 x^{5} + 86 x^{4} - 188 x^{3} - 91 x^{2} + 190 x - 53 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1036488922561=1009^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{9}{25} a^{5} + \frac{2}{5} a^{4} + \frac{1}{25} a^{3} - \frac{9}{25} a^{2} - \frac{2}{25} a + \frac{7}{25}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3982.13151887 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\SL(2,3)$ (as 8T12):
| A solvable group of order 24 |
| The 7 conjugacy class representatives for $\SL(2,3)$ |
| Character table for $\SL(2,3)$ |
Intermediate fields
| 4.4.1018081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1009 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.1009.3t1.1c1 | $1$ | $ 1009 $ | $x^{3} - x^{2} - 336 x + 1719$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.1009.3t1.1c2 | $1$ | $ 1009 $ | $x^{3} - x^{2} - 336 x + 1719$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.1009e2.24t7.1c1 | $2$ | $ 1009^{2}$ | $x^{8} - 3 x^{7} - 20 x^{6} + 49 x^{5} + 86 x^{4} - 188 x^{3} - 91 x^{2} + 190 x - 53$ | $\SL(2,3)$ (as 8T12) | $-1$ | $2$ | |
| * | 2.1009.8t12.1c1 | $2$ | $ 1009 $ | $x^{8} - 3 x^{7} - 20 x^{6} + 49 x^{5} + 86 x^{4} - 188 x^{3} - 91 x^{2} + 190 x - 53$ | $\SL(2,3)$ (as 8T12) | $0$ | $2$ |
| * | 2.1009.8t12.1c2 | $2$ | $ 1009 $ | $x^{8} - 3 x^{7} - 20 x^{6} + 49 x^{5} + 86 x^{4} - 188 x^{3} - 91 x^{2} + 190 x - 53$ | $\SL(2,3)$ (as 8T12) | $0$ | $2$ |
| * | 3.1009e2.4t4.1c1 | $3$ | $ 1009^{2}$ | $x^{4} - x^{3} - 28 x^{2} + 59 x + 4$ | $A_4$ (as 4T4) | $1$ | $3$ |