Properties

Label 8.6.150307078144.1
Degree $8$
Signature $[6, 1]$
Discriminant $-150307078144$
Root discriminant \(24.95\)
Ramified primes $2,17,31$
Class number $2$
Class group [2]
Galois group $C_2 \wr C_2\wr C_2$ (as 8T35)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127)
 
Copy content gp:K = bnfinit(y^8 - 16*y^6 - 8*y^5 + 54*y^4 + 80*y^3 + 16*y^2 - 200*y - 127, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127)
 

\( x^{8} - 16x^{6} - 8x^{5} + 54x^{4} + 80x^{3} + 16x^{2} - 200x - 127 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $8$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[6, 1]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-150307078144\) \(\medspace = -\,2^{24}\cdot 17^{2}\cdot 31\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.95\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3}17^{1/2}31^{1/2}\approx 183.65184453198395$
Ramified primes:   \(2\), \(17\), \(31\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-31}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{10}a^{5}-\frac{1}{10}a^{4}-\frac{1}{5}a^{3}-\frac{1}{10}a+\frac{3}{10}$, $\frac{1}{60}a^{6}+\frac{7}{60}a^{4}-\frac{1}{30}a^{3}+\frac{29}{60}a^{2}+\frac{11}{30}a+\frac{23}{60}$, $\frac{1}{300}a^{7}+\frac{1}{300}a^{6}-\frac{1}{60}a^{5}+\frac{47}{300}a^{4}-\frac{13}{100}a^{3}-\frac{33}{100}a^{2}-\frac{31}{100}a-\frac{133}{300}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{2}$, which has order $2$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $6$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{50}a^{7}+\frac{1}{50}a^{6}-\frac{3}{10}a^{5}-\frac{9}{25}a^{4}+\frac{31}{50}a^{3}+\frac{51}{50}a^{2}+\frac{67}{50}a-\frac{44}{25}$, $\frac{3}{100}a^{7}-\frac{11}{300}a^{6}-\frac{9}{20}a^{5}+\frac{73}{300}a^{4}+\frac{469}{300}a^{3}+\frac{329}{300}a^{2}-\frac{287}{300}a-\frac{1627}{300}$, $\frac{4}{75}a^{7}+\frac{4}{75}a^{6}-\frac{2}{3}a^{5}-\frac{82}{75}a^{4}+\frac{11}{50}a^{3}+\frac{161}{50}a^{2}+\frac{247}{50}a+\frac{181}{150}$, $\frac{1}{75}a^{7}+\frac{1}{75}a^{6}-\frac{4}{15}a^{5}-\frac{13}{75}a^{4}+\frac{69}{50}a^{3}+\frac{9}{50}a^{2}-\frac{77}{50}a-\frac{131}{150}$, $\frac{13}{300}a^{7}+\frac{2}{75}a^{6}-\frac{37}{60}a^{5}-\frac{17}{25}a^{4}+\frac{343}{300}a^{3}+\frac{242}{75}a^{2}+\frac{901}{300}a-\frac{326}{75}$, $\frac{1}{60}a^{7}+\frac{1}{30}a^{6}-\frac{11}{60}a^{5}-\frac{1}{2}a^{4}-\frac{29}{60}a^{3}+\frac{5}{6}a^{2}+\frac{35}{12}a+\frac{11}{30}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 645.464274636 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{1}\cdot 645.464274636 \cdot 2}{2\cdot\sqrt{150307078144}}\cr\approx \mathstrut & 0.669487289060 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 16*x^6 - 8*x^5 + 54*x^4 + 80*x^3 + 16*x^2 - 200*x - 127); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr D_4$ (as 8T35):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 20 conjugacy class representatives for $C_2 \wr C_2\wr C_2$
Character table for $C_2 \wr C_2\wr C_2$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.34816.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 8.4.8565293056.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ ${\href{/padicField/5.2.0.1}{2} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }$ R ${\href{/padicField/19.4.0.1}{4} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ R ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }$ ${\href{/padicField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.8.24c1.61$x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$$8$$1$$24$$C_4\times C_2$$$[2, 3, 4]$$
\(17\) Copy content Toggle raw display 17.1.2.1a1.2$x^{2} + 51$$2$$1$$1$$C_2$$$[\ ]_{2}$$
17.1.2.1a1.2$x^{2} + 51$$2$$1$$1$$C_2$$$[\ ]_{2}$$
17.4.1.0a1.1$x^{4} + 7 x^{2} + 10 x + 3$$1$$4$$0$$C_4$$$[\ ]^{4}$$
\(31\) Copy content Toggle raw display 31.1.2.1a1.2$x^{2} + 93$$2$$1$$1$$C_2$$$[\ ]_{2}$$
31.2.1.0a1.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
31.2.1.0a1.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
31.2.1.0a1.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)