Properties

Label 8.6.103405923.1
Degree $8$
Signature $[6, 1]$
Discriminant $-\,3^{3}\cdot 19^{2}\cdot 103^{2}$
Root discriminant $10.04$
Ramified primes $3, 19, 103$
Class number $1$
Class group Trivial
Galois group $C_2 \wr S_4$ (as 8T44)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 8, 1, -8, 1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + x^5 - 8*x^4 + x^3 + 8*x^2 - 2*x - 1)
 
gp: K = bnfinit(x^8 - x^7 + x^5 - 8*x^4 + x^3 + 8*x^2 - 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 1]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-103405923=-\,3^{3}\cdot 19^{2}\cdot 103^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 19, 103$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a \),  \( 2 a^{7} - 2 a^{6} + 2 a^{5} - a^{4} - 13 a^{3} + 4 a + 2 \),  \( 3 a^{7} - 3 a^{6} + 2 a^{5} - 21 a^{3} + a^{2} + 11 a + 1 \),  \( 2 a^{6} - 3 a^{5} + 3 a^{4} - 2 a^{3} - 13 a^{2} + 6 a + 3 \),  \( a^{7} - 3 a^{6} + 4 a^{5} - 4 a^{4} - 4 a^{3} + 12 a^{2} - 5 a \),  \( 2 a^{7} - 4 a^{6} + 5 a^{5} - 4 a^{4} - 11 a^{3} + 13 a^{2} - 3 a - 1 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9.68622718301 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3:S_4.C_2$ (as 8T44):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 384
The 20 conjugacy class representatives for $C_2 \wr S_4$
Character table for $C_2 \wr S_4$

Intermediate fields

4.4.1957.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }$ R ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$103$103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.4.2.1$x^{4} + 927 x^{2} + 265225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.19_103.2t1.1c1$1$ $ 19 \cdot 103 $ $x^{2} - x - 489$ $C_2$ (as 2T1) $1$ $1$
1.3_19_103.2t1.1c1$1$ $ 3 \cdot 19 \cdot 103 $ $x^{2} - x + 1468$ $C_2$ (as 2T1) $1$ $-1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
2.19_103.3t2.1c1$2$ $ 19 \cdot 103 $ $x^{3} - x^{2} - 9 x + 10$ $S_3$ (as 3T2) $1$ $2$
2.3e2_19_103.6t3.1c1$2$ $ 3^{2} \cdot 19 \cdot 103 $ $x^{6} - 2 x^{5} + 39 x^{4} - 99 x^{3} + 422 x^{2} - 1159 x + 2398$ $D_{6}$ (as 6T3) $1$ $-2$
* 3.19_103.4t5.1c1$3$ $ 19 \cdot 103 $ $x^{4} - 4 x^{2} - x + 1$ $S_4$ (as 4T5) $1$ $3$
3.19e2_103e2.6t8.1c1$3$ $ 19^{2} \cdot 103^{2}$ $x^{4} - 4 x^{2} - x + 1$ $S_4$ (as 4T5) $1$ $3$
3.3e3_19_103.6t11.1c1$3$ $ 3^{3} \cdot 19 \cdot 103 $ $x^{6} - 2 x^{5} + 6 x^{4} - 30 x^{3} + 38 x^{2} - 7 x + 16$ $S_4\times C_2$ (as 6T11) $1$ $-3$
3.3e3_19e2_103e2.6t11.1c1$3$ $ 3^{3} \cdot 19^{2} \cdot 103^{2}$ $x^{6} - 2 x^{5} + 6 x^{4} - 30 x^{3} + 38 x^{2} - 7 x + 16$ $S_4\times C_2$ (as 6T11) $1$ $-3$
* 4.3e3_19_103.8t44.3c1$4$ $ 3^{3} \cdot 19 \cdot 103 $ $x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1$ $C_2 \wr S_4$ (as 8T44) $1$ $2$
4.3_19_103.8t44.3c1$4$ $ 3 \cdot 19 \cdot 103 $ $x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1$ $C_2 \wr S_4$ (as 8T44) $1$ $-2$
4.3e3_19e3_103e3.8t44.3c1$4$ $ 3^{3} \cdot 19^{3} \cdot 103^{3}$ $x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1$ $C_2 \wr S_4$ (as 8T44) $1$ $2$
4.3_19e3_103e3.8t44.3c1$4$ $ 3 \cdot 19^{3} \cdot 103^{3}$ $x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1$ $C_2 \wr S_4$ (as 8T44) $1$ $-2$
6.3e3_19e2_103e2.8t41.1c1$6$ $ 3^{3} \cdot 19^{2} \cdot 103^{2}$ $x^{8} - x^{7} + 9 x^{6} - 8 x^{5} + 25 x^{4} - 18 x^{3} + 20 x^{2} - 8 x + 1$ $V_4^2:(S_3\times C_2)$ (as 8T41) $1$ $0$
6.3e3_19e4_103e4.12t111.1c1$6$ $ 3^{3} \cdot 19^{4} \cdot 103^{4}$ $x^{8} - x^{7} + 9 x^{6} - 8 x^{5} + 25 x^{4} - 18 x^{3} + 20 x^{2} - 8 x + 1$ $V_4^2:(S_3\times C_2)$ (as 8T41) $1$ $0$
6.3e3_19e3_103e3.8t41.1c1$6$ $ 3^{3} \cdot 19^{3} \cdot 103^{3}$ $x^{8} - x^{7} + 9 x^{6} - 8 x^{5} + 25 x^{4} - 18 x^{3} + 20 x^{2} - 8 x + 1$ $V_4^2:(S_3\times C_2)$ (as 8T41) $1$ $0$
6.3e3_19e3_103e3.12t108.1c1$6$ $ 3^{3} \cdot 19^{3} \cdot 103^{3}$ $x^{8} - x^{7} + 9 x^{6} - 8 x^{5} + 25 x^{4} - 18 x^{3} + 20 x^{2} - 8 x + 1$ $V_4^2:(S_3\times C_2)$ (as 8T41) $1$ $0$
8.3e2_19e4_103e4.24t708.2c1$8$ $ 3^{2} \cdot 19^{4} \cdot 103^{4}$ $x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1$ $C_2 \wr S_4$ (as 8T44) $1$ $-4$
8.3e6_19e4_103e4.24t1151.2c1$8$ $ 3^{6} \cdot 19^{4} \cdot 103^{4}$ $x^{8} - x^{7} + x^{5} - 8 x^{4} + x^{3} + 8 x^{2} - 2 x - 1$ $C_2 \wr S_4$ (as 8T44) $1$ $4$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.