Normalized defining polynomial
\(x^{8} - x^{7} - 13 x^{6} - 13 x^{5} + 25 x^{4} + 38 x^{3} - 33 x^{2} - 34 x + 11\)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(9191328125\)\(\medspace = 5^{7}\cdot 7^{6}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $17.60$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{59851} a^{7} + \frac{2025}{59851} a^{6} - \frac{2462}{5441} a^{5} + \frac{15222}{59851} a^{4} + \frac{16532}{59851} a^{3} - \frac{22690}{59851} a^{2} - \frac{4405}{59851} a - \frac{615}{5441}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 129.505077804 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 16 |
The 10 conjugacy class representatives for $C_8:C_2$ |
Character table for $C_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.6125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | R | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
$7$ | 7.8.6.3 | $x^{8} - 7 x^{4} + 147$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.35.2t1.a.a | $1$ | $ 5 \cdot 7 $ | \(\Q(\sqrt{-35}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.35.4t1.a.a | $1$ | $ 5 \cdot 7 $ | 4.4.6125.1 | $C_4$ (as 4T1) | $0$ | $1$ |
1.5.4t1.a.a | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ | |
1.5.4t1.a.b | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ | |
* | 1.35.4t1.a.b | $1$ | $ 5 \cdot 7 $ | 4.4.6125.1 | $C_4$ (as 4T1) | $0$ | $1$ |
* | 2.1225.8t7.a.a | $2$ | $ 5^{2} \cdot 7^{2}$ | 8.4.9191328125.1 | $C_8:C_2$ (as 8T7) | $0$ | $0$ |
* | 2.1225.8t7.a.b | $2$ | $ 5^{2} \cdot 7^{2}$ | 8.4.9191328125.1 | $C_8:C_2$ (as 8T7) | $0$ | $0$ |