Normalized defining polynomial
\( x^{8} - 2 x^{7} - 6 x^{6} + 40 x^{5} - 149 x^{4} + 276 x^{3} - 132 x^{2} - 132 x + 81 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8107185625344=2^{8}\cdot 3^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{29019} a^{7} - \frac{3377}{29019} a^{6} - \frac{2366}{9673} a^{5} - \frac{13904}{29019} a^{4} + \frac{2128}{29019} a^{3} - \frac{4677}{9673} a^{2} - \frac{1505}{9673} a + \frac{1006}{9673}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12504.4375362 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{13}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.13.2t1.1c1 | $1$ | $ 13 $ | $x^{2} - x - 3$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 2.2e2_3e4_13.3t2.2c1 | $2$ | $ 2^{2} \cdot 3^{4} \cdot 13 $ | $x^{3} - 12 x - 10$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| 3.2e4_3e4_13e2.6t8.3c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 13^{2}$ | $x^{4} - 26 x + 39$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_3e4_13e3.4t5.2c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 13^{3}$ | $x^{4} - 26 x + 390$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_3e4_13e2.6t8.1c1 | $3$ | $ 2^{2} \cdot 3^{4} \cdot 13^{2}$ | $x^{4} - x^{3} + 3 x^{2} + x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_3e4_13e3.4t5.1c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 13^{3}$ | $x^{4} - 26 x + 39$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_3e4_13e2.6t8.4c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 13^{2}$ | $x^{4} - 26 x + 390$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_3e4_13.4t5.1c1 | $3$ | $ 2^{2} \cdot 3^{4} \cdot 13 $ | $x^{4} - x^{3} + 3 x^{2} + x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e8_3e8_13e5.8t34.1c1 | $6$ | $ 2^{8} \cdot 3^{8} \cdot 13^{5}$ | $x^{8} - 2 x^{7} - 6 x^{6} + 40 x^{5} - 149 x^{4} + 276 x^{3} - 132 x^{2} - 132 x + 81$ | $V_4^2:S_3$ (as 8T34) | $1$ | $2$ |