Properties

Label 8.4.76245015625.1
Degree $8$
Signature $[4, 2]$
Discriminant $5^{6}\cdot 47^{4}$
Root discriminant $22.92$
Ramified primes $5, 47$
Class number $1$
Class group Trivial
Galois group $V_4^2:S_3$ (as 8T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, -7, -70, 33, 29, -13, 0, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 13*x^5 + 29*x^4 + 33*x^3 - 70*x^2 - 7*x + 31)
 
gp: K = bnfinit(x^8 - 3*x^7 - 13*x^5 + 29*x^4 + 33*x^3 - 70*x^2 - 7*x + 31, 1)
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} - 13 x^{5} + 29 x^{4} + 33 x^{3} - 70 x^{2} - 7 x + 31 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(76245015625=5^{6}\cdot 47^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{791} a^{7} - \frac{52}{113} a^{6} + \frac{14}{113} a^{5} + \frac{204}{791} a^{4} - \frac{52}{791} a^{3} - \frac{179}{791} a^{2} - \frac{313}{791} a - \frac{127}{791}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 251.519805493 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2:S_4$ (as 8T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 10 conjugacy class representatives for $V_4^2:S_3$
Character table for $V_4^2:S_3$

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$47$47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.6.4.1$x^{6} + 1786 x^{3} + 4853173$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
2.5_47e2.3t2.1c1$2$ $ 5 \cdot 47^{2}$ $x^{3} - x^{2} - 31 x - 54$ $S_3$ (as 3T2) $1$ $2$
3.5e3_47e2.4t5.1c1$3$ $ 5^{3} \cdot 47^{2}$ $x^{4} - x^{3} + x^{2} + 14 x + 16$ $S_4$ (as 4T5) $1$ $-1$
3.5e3_47e2.4t5.2c1$3$ $ 5^{3} \cdot 47^{2}$ $x^{4} - x^{3} - 14 x^{2} + 4 x + 61$ $S_4$ (as 4T5) $1$ $-1$
3.5_47e2.4t5.1c1$3$ $ 5 \cdot 47^{2}$ $x^{4} - 2 x^{3} - 2 x^{2} + x + 7$ $S_4$ (as 4T5) $1$ $-1$
3.5e2_47e2.6t8.2c1$3$ $ 5^{2} \cdot 47^{2}$ $x^{4} - x^{3} + x^{2} + 14 x + 16$ $S_4$ (as 4T5) $1$ $-1$
3.5e2_47e2.6t8.1c1$3$ $ 5^{2} \cdot 47^{2}$ $x^{4} - 2 x^{3} - 2 x^{2} + x + 7$ $S_4$ (as 4T5) $1$ $-1$
3.5e2_47e2.6t8.3c1$3$ $ 5^{2} \cdot 47^{2}$ $x^{4} - x^{3} - 14 x^{2} + 4 x + 61$ $S_4$ (as 4T5) $1$ $-1$
* 6.5e5_47e4.8t34.1c1$6$ $ 5^{5} \cdot 47^{4}$ $x^{8} - 3 x^{7} - 13 x^{5} + 29 x^{4} + 33 x^{3} - 70 x^{2} - 7 x + 31$ $V_4^2:S_3$ (as 8T34) $1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.