Properties

Label 8.4.583200000.1
Degree $8$
Signature $[4, 2]$
Discriminant $2^{8}\cdot 3^{6}\cdot 5^{5}$
Root discriminant $12.47$
Ramified primes $2, 3, 5$
Class number $1$
Class group Trivial
Galois group $A_4^2:C_4$ (as 8T46)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 12, -6, 0, 2, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 2*x^6 - 6*x^4 + 12*x^3 + 7*x^2 - 2*x - 1)
 
gp: K = bnfinit(x^8 - 2*x^7 + 2*x^6 - 6*x^4 + 12*x^3 + 7*x^2 - 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(583200000=2^{8}\cdot 3^{6}\cdot 5^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{43} a^{7} + \frac{21}{43} a^{6} + \frac{12}{43} a^{5} + \frac{18}{43} a^{4} + \frac{21}{43} a^{3} - \frac{21}{43} a^{2} - \frac{3}{43} a + \frac{15}{43}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23.985889349 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_4^2:C_4$ (as 8T46):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 576
The 13 conjugacy class representatives for $A_4^2:C_4$
Character table for $A_4^2:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.6$x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$$2$$4$$8$$(C_8:C_2):C_2$$[2, 2, 2]^{4}$
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.6.6.2$x^{6} + 6 x^{4} + 6 x^{3} + 18$$3$$2$$6$$C_3^2:C_4$$[3/2, 3/2]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.2e2_3_5.4t1.1c1$1$ $ 2^{2} \cdot 3 \cdot 5 $ $x^{4} + 15 x^{2} + 45$ $C_4$ (as 4T1) $0$ $-1$
1.2e2_3_5.4t1.1c2$1$ $ 2^{2} \cdot 3 \cdot 5 $ $x^{4} + 15 x^{2} + 45$ $C_4$ (as 4T1) $0$ $-1$
4.2e4_3e6_5e3.6t10.2c1$4$ $ 2^{4} \cdot 3^{6} \cdot 5^{3}$ $x^{6} - 6 x^{4} - 4 x^{3} + 9 x^{2} + 12 x - 16$ $C_3^2:C_4$ (as 6T10) $1$ $0$
4.2e4_3e6_5e3.6t10.1c1$4$ $ 2^{4} \cdot 3^{6} \cdot 5^{3}$ $x^{6} - 6 x^{4} - 4 x^{3} + 9 x^{2} + 12 x - 16$ $C_3^2:C_4$ (as 6T10) $1$ $0$
6.2e12_3e8_5e5.12t160.2c1$6$ $ 2^{12} \cdot 3^{8} \cdot 5^{5}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $1$ $-2$
* 6.2e8_3e6_5e4.8t46.1c1$6$ $ 2^{8} \cdot 3^{6} \cdot 5^{4}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $1$ $2$
9.2e16_3e12_5e6.16t1030.2c1$9$ $ 2^{16} \cdot 3^{12} \cdot 5^{6}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $1$ $1$
9.2e16_3e12_5e7.18t184.3c1$9$ $ 2^{16} \cdot 3^{12} \cdot 5^{7}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $1$ $1$
9.2e18_3e13_5e7.36t766.2c1$9$ $ 2^{18} \cdot 3^{13} \cdot 5^{7}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $0$ $-1$
9.2e18_3e13_5e7.36t766.2c2$9$ $ 2^{18} \cdot 3^{13} \cdot 5^{7}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $0$ $-1$
12.2e20_3e18_5e9.24t1506.1c1$12$ $ 2^{20} \cdot 3^{18} \cdot 5^{9}$ $x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{4} + 12 x^{3} + 7 x^{2} - 2 x - 1$ $A_4^2:C_4$ (as 8T46) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.