Properties

Label 8.4.54954142929.1
Degree $8$
Signature $[4, 2]$
Discriminant $3^{4}\cdot 7^{2}\cdot 61^{4}$
Root discriminant $22.00$
Ramified primes $3, 7, 61$
Class number $1$
Class group Trivial
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 6, -24, -6, 29, 4, -9, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 9*x^6 + 4*x^5 + 29*x^4 - 6*x^3 - 24*x^2 + 6*x - 3)
 
gp: K = bnfinit(x^8 - x^7 - 9*x^6 + 4*x^5 + 29*x^4 - 6*x^3 - 24*x^2 + 6*x - 3, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} - 9 x^{6} + 4 x^{5} + 29 x^{4} - 6 x^{3} - 24 x^{2} + 6 x - 3 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(54954142929=3^{4}\cdot 7^{2}\cdot 61^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1}{3} a^{5} - \frac{4}{15} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 730.511016858 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_2^2$ (as 8T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$
Character table for $(((C_4 \times C_2): C_2):C_2):C_2$

Intermediate fields

\(\Q(\sqrt{61}) \), 4.2.11163.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$7$7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
61Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.61.2t1.1c1$1$ $ 61 $ $x^{2} - x - 15$ $C_2$ (as 2T1) $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.3_61.2t1.1c1$1$ $ 3 \cdot 61 $ $x^{2} - x + 46$ $C_2$ (as 2T1) $1$ $-1$
1.3_7.2t1.1c1$1$ $ 3 \cdot 7 $ $x^{2} - x - 5$ $C_2$ (as 2T1) $1$ $1$
1.3_7_61.2t1.1c1$1$ $ 3 \cdot 7 \cdot 61 $ $x^{2} - x - 320$ $C_2$ (as 2T1) $1$ $1$
1.7.2t1.1c1$1$ $ 7 $ $x^{2} - x + 2$ $C_2$ (as 2T1) $1$ $-1$
1.7_61.2t1.1c1$1$ $ 7 \cdot 61 $ $x^{2} - x + 107$ $C_2$ (as 2T1) $1$ $-1$
* 2.3_61.4t3.2c1$2$ $ 3 \cdot 61 $ $x^{4} - 2 x^{3} - 2 x^{2} + 3 x + 3$ $D_{4}$ (as 4T3) $1$ $0$
2.3e2_7_61e2.4t3.2c1$2$ $ 3^{2} \cdot 7 \cdot 61^{2}$ $x^{4} - x^{3} + 138 x^{2} - 46 x + 4861$ $D_{4}$ (as 4T3) $1$ $0$
2.3e2_7_61.4t3.4c1$2$ $ 3^{2} \cdot 7 \cdot 61 $ $x^{4} - x^{3} + 18 x^{2} - 13 x + 79$ $D_{4}$ (as 4T3) $1$ $0$
2.3_7e2_61.4t3.2c1$2$ $ 3 \cdot 7^{2} \cdot 61 $ $x^{4} - 2 x^{3} + 26 x^{2} - 25 x + 193$ $D_{4}$ (as 4T3) $1$ $0$
2.3e2_7.4t3.2c1$2$ $ 3^{2} \cdot 7 $ $x^{4} - x^{3} + 2 x + 1$ $D_{4}$ (as 4T3) $1$ $0$
2.3e2_7_61.4t3.3c1$2$ $ 3^{2} \cdot 7 \cdot 61 $ $x^{4} - 2 x^{3} - 15 x^{2} + 16 x + 76$ $D_{4}$ (as 4T3) $1$ $0$
4.3e3_7e2_61e2.8t29.1c1$4$ $ 3^{3} \cdot 7^{2} \cdot 61^{2}$ $x^{8} - x^{7} - 9 x^{6} + 4 x^{5} + 29 x^{4} - 6 x^{3} - 24 x^{2} + 6 x - 3$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $1$ $-2$
* 4.3e3_7e2_61e2.8t29.2c1$4$ $ 3^{3} \cdot 7^{2} \cdot 61^{2}$ $x^{8} - x^{7} - 9 x^{6} + 4 x^{5} + 29 x^{4} - 6 x^{3} - 24 x^{2} + 6 x - 3$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.