Normalized defining polynomial
\( x^{8} - 15x^{4} - 10x^{2} + 5 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(5120000000\) \(\medspace = 2^{16}\cdot 5^{7}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(16.36\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{5/2}5^{7/8}\approx 23.129899350864836$ | ||
Ramified primes: | \(2\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{41}a^{6}+\frac{10}{41}a^{4}+\frac{3}{41}a^{2}+\frac{20}{41}$, $\frac{1}{41}a^{7}+\frac{10}{41}a^{5}+\frac{3}{41}a^{3}+\frac{20}{41}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{4}{41}a^{6}-\frac{1}{41}a^{4}-\frac{70}{41}a^{2}-\frac{43}{41}$, $\frac{7}{41}a^{6}-\frac{12}{41}a^{4}-\frac{102}{41}a^{2}+\frac{58}{41}$, $\frac{12}{41}a^{6}-\frac{3}{41}a^{4}-\frac{169}{41}a^{2}-\frac{88}{41}$, $\frac{9}{41}a^{7}+\frac{4}{41}a^{6}+\frac{8}{41}a^{5}-\frac{1}{41}a^{4}-\frac{137}{41}a^{3}-\frac{70}{41}a^{2}-\frac{148}{41}a-\frac{84}{41}$, $\frac{16}{41}a^{7}-\frac{4}{41}a^{6}-\frac{4}{41}a^{5}+\frac{1}{41}a^{4}-\frac{239}{41}a^{3}+\frac{70}{41}a^{2}-\frac{131}{41}a+\frac{84}{41}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 88.2974472278 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 88.2974472278 \cdot 1}{2\cdot\sqrt{5120000000}}\cr\approx \mathstrut & 0.389729150694 \end{aligned}\]
Galois group
$\OD_{16}$ (as 8T7):
A solvable group of order 16 |
The 10 conjugacy class representatives for $C_8:C_2$ |
Character table for $C_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 16 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | R | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.1.0.1}{1} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.16.38 | $x^{8} - 4 x^{5} + 20 x^{4} + 24 x^{3} + 88 x^{2} + 56 x + 124$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ |
\(5\) | 5.8.7.2 | $x^{8} + 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.40.2t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{-10}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.20.4t1.a.a | $1$ | $ 2^{2} \cdot 5 $ | \(\Q(\zeta_{20})^+\) | $C_4$ (as 4T1) | $0$ | $1$ |
1.40.4t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | 4.0.8000.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
1.40.4t1.b.b | $1$ | $ 2^{3} \cdot 5 $ | 4.0.8000.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
* | 1.20.4t1.a.b | $1$ | $ 2^{2} \cdot 5 $ | \(\Q(\zeta_{20})^+\) | $C_4$ (as 4T1) | $0$ | $1$ |
* | 2.1600.8t7.b.a | $2$ | $ 2^{6} \cdot 5^{2}$ | 8.4.5120000000.1 | $C_8:C_2$ (as 8T7) | $0$ | $0$ |
* | 2.1600.8t7.b.b | $2$ | $ 2^{6} \cdot 5^{2}$ | 8.4.5120000000.1 | $C_8:C_2$ (as 8T7) | $0$ | $0$ |