Normalized defining polynomial
\( x^{8} - 32 x^{6} + 384 x^{4} - 2452 x^{2} - 2424 x + 460 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271749158553856=2^{8}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{148} a^{6} - \frac{1}{37} a^{5} + \frac{3}{74} a^{4} - \frac{19}{74} a^{3} + \frac{1}{74} a^{2} + \frac{11}{37} a - \frac{17}{37}$, $\frac{1}{148} a^{7} - \frac{5}{74} a^{5} - \frac{7}{74} a^{4} - \frac{1}{74} a^{3} + \frac{13}{37} a^{2} - \frac{10}{37} a + \frac{6}{37}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27091.6471953 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{101}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| $101$ | 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.101.2t1.1c1 | $1$ | $ 101 $ | $x^{2} - x - 25$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 2.2e2_101.3t2.1c1 | $2$ | $ 2^{2} \cdot 101 $ | $x^{3} - x^{2} - 5 x - 1$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| 3.2e4_101e2.6t8.2c1 | $3$ | $ 2^{4} \cdot 101^{2}$ | $x^{4} - 2 x^{3} + 52 x^{2} + 50 x + 19$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_101.4t5.1c1 | $3$ | $ 2^{4} \cdot 101 $ | $x^{4} - 2 x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_101e2.6t8.1c1 | $3$ | $ 2^{2} \cdot 101^{2}$ | $x^{4} - x^{3} + 13 x^{2} - 19 x + 58$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_101e3.4t5.1c1 | $3$ | $ 2^{4} \cdot 101^{3}$ | $x^{4} - 2 x^{3} + 52 x^{2} + 50 x + 19$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_101e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 101^{2}$ | $x^{4} - 2 x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_101e3.4t5.1c1 | $3$ | $ 2^{2} \cdot 101^{3}$ | $x^{4} - x^{3} + 13 x^{2} - 19 x + 58$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e8_101e5.8t34.1c1 | $6$ | $ 2^{8} \cdot 101^{5}$ | $x^{8} - 32 x^{6} + 384 x^{4} - 2452 x^{2} - 2424 x + 460$ | $V_4^2:S_3$ (as 8T34) | $1$ | $2$ |