Normalized defining polynomial
\( x^{8} - 3 x^{7} + 5 x^{6} - 25 x^{5} + 42 x^{4} - 33 x^{3} + 3 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26261675072=2^{6}\cdot 17^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3991} a^{7} - \frac{1509}{3991} a^{6} + \frac{1680}{3991} a^{5} + \frac{189}{3991} a^{4} - \frac{1231}{3991} a^{3} - \frac{1962}{3991} a^{2} + \frac{1435}{3991} a - \frac{1969}{3991}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 83.4829009987 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8:C_2$ |
| Character table for $C_8:C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3.2t1.2c1 | $1$ | $ 2^{3}$ | $x^{2} + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_17.2t1.2c1 | $1$ | $ 2^{3} \cdot 17 $ | $x^{2} + 34$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.17.2t1.1c1 | $1$ | $ 17 $ | $x^{2} - x - 4$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.17.4t1.1c1 | $1$ | $ 17 $ | $x^{4} - x^{3} - 6 x^{2} + x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ |
| 1.2e3_17.4t1.2c1 | $1$ | $ 2^{3} \cdot 17 $ | $x^{4} + 34 x^{2} + 272$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.2e3_17.4t1.2c2 | $1$ | $ 2^{3} \cdot 17 $ | $x^{4} + 34 x^{2} + 272$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| * | 1.17.4t1.1c2 | $1$ | $ 17 $ | $x^{4} - x^{3} - 6 x^{2} + x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 2.2e3_17e2.8t7.1c1 | $2$ | $ 2^{3} \cdot 17^{2}$ | $x^{8} - 3 x^{7} + 5 x^{6} - 25 x^{5} + 42 x^{4} - 33 x^{3} + 3 x^{2} + 10 x - 1$ | $C_8:C_2$ (as 8T7) | $0$ | $0$ |
| * | 2.2e3_17e2.8t7.1c2 | $2$ | $ 2^{3} \cdot 17^{2}$ | $x^{8} - 3 x^{7} + 5 x^{6} - 25 x^{5} + 42 x^{4} - 33 x^{3} + 3 x^{2} + 10 x - 1$ | $C_8:C_2$ (as 8T7) | $0$ | $0$ |