Normalized defining polynomial
\( x^{8} - 2x^{7} + x^{6} + 30x^{5} - 119x^{4} - 30x^{3} - 13x^{2} + 450x + 106 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(2515497505024\)
\(\medspace = 2^{8}\cdot 7^{6}\cdot 17^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.49\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(7\), \(17\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{3}{8}a^{3}+\frac{1}{8}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{96}a^{6}-\frac{1}{16}a^{5}-\frac{1}{24}a^{4}+\frac{7}{24}a^{3}-\frac{19}{96}a^{2}+\frac{1}{48}a-\frac{23}{48}$, $\frac{1}{52032}a^{7}-\frac{71}{17344}a^{6}+\frac{1063}{26016}a^{5}-\frac{379}{6504}a^{4}-\frac{2095}{52032}a^{3}-\frac{21937}{52032}a^{2}+\frac{2849}{13008}a-\frac{3037}{8672}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{43}{2168}a^{7}-\frac{161}{4336}a^{6}+\frac{91}{2168}a^{5}+\frac{665}{1084}a^{4}-\frac{4991}{2168}a^{3}-\frac{693}{4336}a^{2}-\frac{1295}{2168}a-\frac{85}{2168}$, $\frac{153}{8672}a^{7}-\frac{69}{8672}a^{6}+\frac{39}{4336}a^{5}+\frac{549}{1084}a^{4}-\frac{8343}{8672}a^{3}-\frac{19809}{8672}a^{2}-\frac{9627}{2168}a-\frac{4295}{4336}$, $\frac{91}{1084}a^{7}-\frac{555}{2168}a^{6}+\frac{243}{1084}a^{5}+\frac{2947}{1084}a^{4}-\frac{14495}{1084}a^{3}+\frac{16911}{2168}a^{2}+\frac{13469}{1084}a+\frac{2215}{1084}$, $\frac{7}{3252}a^{7}-\frac{275}{26016}a^{6}+\frac{179}{13008}a^{5}+\frac{185}{3252}a^{4}-\frac{1115}{3252}a^{3}-\frac{913}{8672}a^{2}+\frac{12687}{4336}a-\frac{46535}{13008}$, $\frac{131}{13008}a^{7}+\frac{5}{6504}a^{6}+\frac{115}{3252}a^{5}+\frac{1243}{3252}a^{4}-\frac{6697}{13008}a^{3}-\frac{417}{2168}a^{2}-\frac{2043}{2168}a-\frac{353}{1626}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 17020.6917778 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 17020.6917778 \cdot 1}{2\cdot\sqrt{2515497505024}}\cr\approx \mathstrut & 3.38933881747 \end{aligned}\]
Galois group
A solvable group of order 16 |
The 10 conjugacy class representatives for $Q_8:C_2$ |
Character table for $Q_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{119}) \), \(\Q(\sqrt{7}, \sqrt{17})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 16 |
Degree 8 siblings: | 8.0.157218594064.1, 8.0.8704143616.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.1.0.1}{1} }^{8}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
\(7\)
| 7.8.6.1 | $x^{8} + 14 x^{4} - 245$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(17\)
| 17.8.4.1 | $x^{8} + 612 x^{7} + 140536 x^{6} + 14363966 x^{5} + 553913435 x^{4} + 345855654 x^{3} + 4032327212 x^{2} + 6379401496 x + 2294776272$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.68.2t1.a.a | $1$ | $ 2^{2} \cdot 17 $ | \(\Q(\sqrt{-17}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.119.2t1.a.a | $1$ | $ 7 \cdot 17 $ | \(\Q(\sqrt{-119}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.28.2t1.a.a | $1$ | $ 2^{2} \cdot 7 $ | \(\Q(\sqrt{7}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.476.2t1.a.a | $1$ | $ 2^{2} \cdot 7 \cdot 17 $ | \(\Q(\sqrt{119}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.3332.8t11.b.a | $2$ | $ 2^{2} \cdot 7^{2} \cdot 17 $ | 8.4.2515497505024.1 | $Q_8:C_2$ (as 8T11) | $0$ | $0$ |
* | 2.3332.8t11.b.b | $2$ | $ 2^{2} \cdot 7^{2} \cdot 17 $ | 8.4.2515497505024.1 | $Q_8:C_2$ (as 8T11) | $0$ | $0$ |