Properties

Label 8.4.1644167168.1
Degree $8$
Signature $[4, 2]$
Discriminant $2^{25}\cdot 7^{2}$
Root discriminant $14.19$
Ramified primes $2, 7$
Class number $1$
Class group Trivial
Galois group $A_4^2:C_4$ (as 8T46)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -8, -8, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 8*x^3 - 8*x^2 + 1)
 
gp: K = bnfinit(x^8 - 8*x^3 - 8*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{8} - 8 x^{3} - 8 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1644167168=2^{25}\cdot 7^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{17} a^{7} - \frac{2}{17} a^{6} + \frac{4}{17} a^{5} - \frac{8}{17} a^{4} - \frac{1}{17} a^{3} - \frac{6}{17} a^{2} + \frac{4}{17} a - \frac{8}{17}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 71.5321173773 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_4^2:C_4$ (as 8T46):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 576
The 13 conjugacy class representatives for $A_4^2:C_4$
Character table for $A_4^2:C_4$

Intermediate fields

\(\Q(\sqrt{2}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ R ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.25.2$x^{8} + 10 x^{4} + 20 x^{2} + 2$$8$$1$$25$$C_2^3: C_4$$[2, 3, 7/2, 4, 17/4]$
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.3.2.1$x^{3} + 14$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
1.2e4.4t1.2c1$1$ $ 2^{4}$ $x^{4} + 4 x^{2} + 2$ $C_4$ (as 4T1) $0$ $-1$
1.2e4.4t1.2c2$1$ $ 2^{4}$ $x^{4} + 4 x^{2} + 2$ $C_4$ (as 4T1) $0$ $-1$
4.2e11_7e2.6t10.2c1$4$ $ 2^{11} \cdot 7^{2}$ $x^{6} - 2 x^{5} + x^{4} - 4 x^{3} - 11 x^{2} + 10 x + 41$ $C_3^2:C_4$ (as 6T10) $1$ $0$
4.2e11_7e4.6t10.2c1$4$ $ 2^{11} \cdot 7^{4}$ $x^{6} - 2 x^{5} + x^{4} - 4 x^{3} - 11 x^{2} + 10 x + 41$ $C_3^2:C_4$ (as 6T10) $1$ $0$
6.2e25_7e2.12t160.2c1$6$ $ 2^{25} \cdot 7^{2}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $1$ $-2$
* 6.2e22_7e2.8t46.1c1$6$ $ 2^{22} \cdot 7^{2}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $1$ $2$
9.2e32_7e6.16t1030.1c1$9$ $ 2^{32} \cdot 7^{6}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $1$ $1$
9.2e35_7e6.18t184.2c1$9$ $ 2^{35} \cdot 7^{6}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $1$ $1$
9.2e36_7e6.36t766.1c1$9$ $ 2^{36} \cdot 7^{6}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $0$ $-1$
9.2e36_7e6.36t766.1c2$9$ $ 2^{36} \cdot 7^{6}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $0$ $-1$
12.2e47_7e10.24t1506.1c1$12$ $ 2^{47} \cdot 7^{10}$ $x^{8} - 8 x^{3} - 8 x^{2} + 1$ $A_4^2:C_4$ (as 8T46) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.