Normalized defining polynomial
\( x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1584788925456=2^{4}\cdot 3^{4}\cdot 11^{4}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1000} a^{7} + \frac{3}{50} a^{6} - \frac{39}{250} a^{5} + \frac{2}{125} a^{4} - \frac{1}{1000} a^{3} - \frac{7}{500} a^{2} + \frac{13}{125} a - \frac{43}{125}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2057.82996063 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(A_4\wr C_2):C_2$ (as 8T45):
| A solvable group of order 576 |
| The 16 conjugacy class representatives for $(A_4\wr C_2):C_2$ |
| Character table for $(A_4\wr C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{561}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_17.2t1.1c1 | $1$ | $ 3 \cdot 17 $ | $x^{2} - x + 13$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3_11_17.2t1.1c1 | $1$ | $ 3 \cdot 11 \cdot 17 $ | $x^{2} - x - 140$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 2.2e2_3_17.3t2.1c1 | $2$ | $ 2^{2} \cdot 3 \cdot 17 $ | $x^{3} - x^{2} + x - 3$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e2_3e2_11_17e2.6t3.1c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 11 \cdot 17^{2}$ | $x^{6} - x^{5} - 11 x^{4} + 127 x^{3} + 418 x^{2} - 2094 x - 21722$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.2e2_11.3t2.1c1 | $2$ | $ 2^{2} \cdot 11 $ | $x^{3} - x^{2} + x + 1$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e2_3_11e2_17.6t3.1c1 | $2$ | $ 2^{2} \cdot 3 \cdot 11^{2} \cdot 17 $ | $x^{6} - 2 x^{5} - 9 x^{4} + 82 x^{3} - 47 x^{2} - 360 x - 3753$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 4.2e2_3e2_11e2_17e2.6t9.1c1 | $4$ | $ 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 17^{2}$ | $x^{6} - 2 x^{5} - x^{4} - 15 x^{3} + 18 x^{2} + 17 x - 68$ | $S_3^2$ (as 6T9) | $1$ | $0$ | |
| * | 6.2e4_3e3_11e3_17e3.8t45.1c1 | $6$ | $ 2^{4} \cdot 3^{3} \cdot 11^{3} \cdot 17^{3}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $2$ |
| 6.2e4_3e3_11e3_17e3.12t161.1c1 | $6$ | $ 2^{4} \cdot 3^{3} \cdot 11^{3} \cdot 17^{3}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $-2$ | |
| 9.2e12_3e6_11e3_17e6.18t185.1c1 | $9$ | $ 2^{12} \cdot 3^{6} \cdot 11^{3} \cdot 17^{6}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $-1$ | |
| 9.2e12_3e3_11e3_17e3.12t165.1c1 | $9$ | $ 2^{12} \cdot 3^{3} \cdot 11^{3} \cdot 17^{3}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $1$ | |
| 9.2e12_3e3_11e6_17e3.18t185.1c1 | $9$ | $ 2^{12} \cdot 3^{3} \cdot 11^{6} \cdot 17^{3}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $-1$ | |
| 9.2e12_3e6_11e6_17e6.18t179.1c1 | $9$ | $ 2^{12} \cdot 3^{6} \cdot 11^{6} \cdot 17^{6}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $1$ | |
| 12.2e14_3e6_11e6_17e6.24t1504.1c1 | $12$ | $ 2^{14} \cdot 3^{6} \cdot 11^{6} \cdot 17^{6}$ | $x^{8} - 4 x^{7} + 4 x^{6} - 25 x^{4} + 50 x^{3} + 16$ | $(A_4\wr C_2):C_2$ (as 8T45) | $1$ | $0$ |