Normalized defining polynomial
\( x^{8} - x^{7} + 2x^{6} + x^{5} - 15x^{4} + 23x^{3} + 6x^{2} - 27x + 19 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(-8671400783\)
\(\medspace = -\,17^{4}\cdot 47^{3}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(17.47\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(17\), \(47\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{273}a^{7}-\frac{4}{273}a^{6}+\frac{2}{39}a^{5}-\frac{44}{91}a^{4}+\frac{17}{273}a^{3}-\frac{17}{39}a^{2}-\frac{92}{273}a-\frac{8}{91}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{12}{91}a^{7}-\frac{53}{273}a^{6}+\frac{7}{39}a^{5}-\frac{20}{273}a^{4}-\frac{571}{273}a^{3}+\frac{43}{13}a^{2}+\frac{328}{273}a-\frac{379}{91}$, $\frac{2}{273}a^{7}-\frac{8}{273}a^{6}+\frac{4}{39}a^{5}+\frac{3}{91}a^{4}+\frac{34}{273}a^{3}+\frac{5}{39}a^{2}-\frac{184}{273}a+\frac{75}{91}$, $\frac{16}{273}a^{7}+\frac{9}{91}a^{6}+\frac{2}{13}a^{5}+\frac{163}{273}a^{4}-\frac{92}{273}a^{3}+\frac{1}{39}a^{2}+\frac{530}{273}a-\frac{128}{91}$, $\frac{22}{273}a^{7}+\frac{1}{91}a^{6}+\frac{5}{39}a^{5}+\frac{33}{91}a^{4}-\frac{118}{91}a^{3}+\frac{29}{39}a^{2}+\frac{524}{273}a-\frac{346}{273}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 81.706186763 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 16 |
The 7 conjugacy class representatives for $D_{8}$ |
Character table for $D_{8}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.2.13583.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | ${\href{/padicField/3.2.0.1}{2} }^{4}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.8.0.1}{8} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\)
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(47\)
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.47.2t1.a.a | $1$ | $ 47 $ | \(\Q(\sqrt{-47}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.799.2t1.a.a | $1$ | $ 17 \cdot 47 $ | \(\Q(\sqrt{-799}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.799.4t3.a.a | $2$ | $ 17 \cdot 47 $ | 4.2.13583.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.799.8t6.a.a | $2$ | $ 17 \cdot 47 $ | 8.2.8671400783.1 | $D_{8}$ (as 8T6) | $1$ | $0$ |
* | 2.799.8t6.a.b | $2$ | $ 17 \cdot 47 $ | 8.2.8671400783.1 | $D_{8}$ (as 8T6) | $1$ | $0$ |