# Properties

 Label 8.2.8338372875.1 Degree $8$ Signature $[2, 3]$ Discriminant $-8338372875$ Root discriminant $$17.38$$ Ramified primes $3,5,7$ Class number $1$ Class group trivial Galois group $D_{8}$ (as 8T6)

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5)

gp: K = bnfinit(y^8 - 3*y^7 + 7*y^6 - 21*y^4 + 63*y^3 - 77*y^2 + 60*y - 5, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5);

oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5)

$$x^{8} - 3x^{7} + 7x^{6} - 21x^{4} + 63x^{3} - 77x^{2} + 60x - 5$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

oscar: defining_polynomial(K)

## Invariants

 Degree: $8$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K);  oscar: degree(K) Signature: $[2, 3]$ sage: K.signature()  gp: K.sign  magma: Signature(K);  oscar: signature(K) Discriminant: $$-8338372875$$ -8338372875 $$\medspace = -\,3^{4}\cdot 5^{3}\cdot 7^{7}$$ sage: K.disc()  gp: K.disc  magma: OK := Integers(K); Discriminant(OK);  oscar: OK = ring_of_integers(K); discriminant(OK) Root discriminant: $$17.38$$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(OK))^(1/Degree(K));  oscar: (1.0 * dK)^(1/degree(K)) Ramified primes: $$3$$, $$5$$, $$7$$ 3, 5, 7 sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(OK));  oscar: prime_divisors(discriminant((OK))) Discriminant root field: $$\Q(\sqrt{-35})$$ $\card{ \Aut(K/\Q) }$: $2$ sage: K.automorphisms()  magma: Automorphisms(K);  oscar: automorphisms(K) This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{6}+\frac{1}{3}$, $\frac{1}{15}a^{7}-\frac{2}{15}a^{6}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{3}a-\frac{1}{3}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

oscar: basis(OK)

 Monogenic: Not computed Index: $1$ Inessential primes: None

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

oscar: class_group(K)

## Unit group

sage: UK = K.unit_group()

magma: UK, fUK := UnitGroup(K);

oscar: UK, fUK = unit_group(OK)

 Rank: $4$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K);  oscar: rank(UK) Torsion generator: $$-1$$ -1  (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  oscar: torsion_units_generator(OK) Fundamental units: $\frac{2}{15}a^{7}-\frac{4}{15}a^{6}+\frac{1}{3}a^{5}+\frac{2}{3}a^{4}-\frac{32}{15}a^{3}+\frac{59}{15}a^{2}-\frac{10}{3}a+2$, $\frac{2}{15}a^{7}-\frac{4}{15}a^{6}+\frac{1}{3}a^{5}+\frac{2}{3}a^{4}-\frac{47}{15}a^{3}+\frac{44}{15}a^{2}-\frac{10}{3}a-4$, $\frac{2}{15}a^{7}-\frac{3}{5}a^{6}+\frac{2}{3}a^{5}+\frac{2}{3}a^{4}-\frac{67}{15}a^{3}+\frac{104}{15}a^{2}-5a-\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{2}{3}a^{6}+a^{5}+2a^{4}-6a^{3}+10a^{2}-\frac{20}{3}a+\frac{1}{3}$ 2/15*a^7 - 4/15*a^6 + 1/3*a^5 + 2/3*a^4 - 32/15*a^3 + 59/15*a^2 - 10/3*a + 2, 2/15*a^7 - 4/15*a^6 + 1/3*a^5 + 2/3*a^4 - 47/15*a^3 + 44/15*a^2 - 10/3*a - 4, 2/15*a^7 - 3/5*a^6 + 2/3*a^5 + 2/3*a^4 - 67/15*a^3 + 104/15*a^2 - 5*a - 1/3, 1/3*a^7 - 2/3*a^6 + a^5 + 2*a^4 - 6*a^3 + 10*a^2 - 20/3*a + 1/3 sage: UK.fundamental_units()  gp: K.fu  magma: [K|fUK(g): g in Generators(UK)];  oscar: [K(fUK(a)) for a in gens(UK)] Regulator: $$127.42902567$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);  oscar: regulator(K)

## Class number formula

\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 127.42902567 \cdot 1}{2\cdot\sqrt{8338372875}}\cr\approx \mathstrut & 0.69230474338 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula

x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5)

DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()

hK = K.class_number(); wK = K.unit_group().torsion_generator().order();

2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))

# self-contained Pari/GP code snippet to compute the analytic class number formula

K = bnfinit(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5, 1);

[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]

/* self-contained Magma code snippet to compute the analytic class number formula */

Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5);

OK := Integers(K); DK := Discriminant(OK);

UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);

r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);

hK := #clK; wK := #TorsionSubgroup(UK);

2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));

# self-contained Oscar code snippet to compute the analytic class number formula

Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 + 7*x^6 - 21*x^4 + 63*x^3 - 77*x^2 + 60*x - 5);

OK = ring_of_integers(K); DK = discriminant(OK);

UK, fUK = unit_group(OK); clK, fclK = class_group(OK);

r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);

hK = order(clK); wK = torsion_units_order(K);

2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))

## Galois group

$D_8$ (as 8T6):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: G = GaloisGroup(K);

oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)

 A solvable group of order 16 The 7 conjugacy class representatives for $D_{8}$ Character table for $D_{8}$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]

gp: L = nfsubfields(K); L[2..length(b)]

magma: L := Subfields(K); L[2..#L];

oscar: subfields(K)[2:end-1]

## Sibling fields

 Galois closure: 16.0.1738211555063394140625.3 Degree 8 sibling: 8.0.13897288125.1 Minimal sibling: This field is its own minimal sibling

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type ${\href{/padicField/2.8.0.1}{8} }$ R R R ${\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }$ ${\href{/padicField/23.8.0.1}{8} }$ ${\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.8.0.1}{8} }$ ${\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }$ ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:

p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:

p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])

// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))]; # to obtain a list of$[e_i,f_i]$for the factorization of the ideal$p\mathcal{O}_K$for$p=7$in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac] ## Local algebras for ramified primes$p$LabelPolynomial$efc$Galois group Slope content $$3$$ 3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2} 3.4.2.1x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$$$5$$$\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2} 5.2.1.2x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2} $$7$$ 7.8.7.1x^{8} + 7$$8$$1$$7$$D_{8}$$[\ ]_{8}^{2}$## Artin representations Label Dimension Conductor Artin stem field$G$Ind$\chi(c)$* 1.1.1t1.a.a$11$$$\Q$$$C_111$* 1.21.2t1.a.a$1 3 \cdot 7 $$$\Q(\sqrt{21})$$$C_2$(as 2T1)$11$1.35.2t1.a.a$1 5 \cdot 7 $$$\Q(\sqrt{-35})$$$C_2$(as 2T1)$1-1$1.15.2t1.a.a$1 3 \cdot 5 $$$\Q(\sqrt{-15})$$$C_2$(as 2T1)$1-1$* 2.735.4t3.b.a$2 3 \cdot 5 \cdot 7^{2}$4.2.15435.1$D_{4}$(as 4T3)$10$* 2.735.8t6.c.a$2 3 \cdot 5 \cdot 7^{2}$8.2.8338372875.1$D_{8}$(as 8T6)$10$* 2.735.8t6.c.b$2 3 \cdot 5 \cdot 7^{2}$8.2.8338372875.1$D_{8}$(as 8T6)$10\$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.