magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, 0, -8, 1, 9, -5, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 5*x^6 + 9*x^5 + x^4 - 8*x^3 + 3*x + 1)
gp: K = bnfinit(x^8 - x^7 - 5*x^6 + 9*x^5 + x^4 - 8*x^3 + 3*x + 1, 1)
Normalized defining polynomial
\( x^{8} - x^{7} - 5 x^{6} + 9 x^{5} + x^{4} - 8 x^{3} + 3 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-67381875=-\,3^{4}\cdot 5^{4}\cdot 11^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{6} - a^{5} - 5 a^{4} + 8 a^{3} - 4 a - 1 \), \( a^{7} - a^{6} - 4 a^{5} + 8 a^{4} - 4 a^{3} - 1 \), \( a^{6} - 4 a^{4} + 4 a^{3} \), \( a^{7} - a^{6} - 4 a^{5} + 8 a^{4} - 4 a^{3} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.48804517253 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
| Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.2475.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_5.2t1.1c1 | $1$ | $ 3 \cdot 5 $ | $x^{2} - x + 4$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.5_11.2t1.1c1 | $1$ | $ 5 \cdot 11 $ | $x^{2} - x + 14$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_11.2t1.1c1 | $1$ | $ 3 \cdot 11 $ | $x^{2} - x - 8$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3_5_11.2t1.1c1 | $1$ | $ 3 \cdot 5 \cdot 11 $ | $x^{2} - x - 41$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.3e2_5_11.4t3.1c1 | $2$ | $ 3^{2} \cdot 5 \cdot 11 $ | $x^{4} - x^{3} - x^{2} - 5 x - 5$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| 2.3_11e2.4t3.1c1 | $2$ | $ 3 \cdot 11^{2}$ | $x^{4} - 2 x^{3} - 4 x^{2} + 5 x - 2$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 2.3_5_11e2.4t3.4c1 | $2$ | $ 3 \cdot 5 \cdot 11^{2}$ | $x^{4} - x^{3} - x^{2} - 9 x + 15$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 2.3_5e2_11e2.4t3.1c1 | $2$ | $ 3 \cdot 5^{2} \cdot 11^{2}$ | $x^{4} - x^{3} + 10 x^{2} + 57 x - 51$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 2.3_5_11e2.4t3.3c1 | $2$ | $ 3 \cdot 5 \cdot 11^{2}$ | $x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 9$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 2.5_11.4t3.1c1 | $2$ | $ 5 \cdot 11 $ | $x^{4} - x^{3} + 2 x - 1$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 4.3e2_5e2_11e2.8t26.4c1 | $4$ | $ 3^{2} \cdot 5^{2} \cdot 11^{2}$ | $x^{8} - x^{7} - 5 x^{6} + 9 x^{5} + x^{4} - 8 x^{3} + 3 x + 1$ | $(C_4^2 : C_2):C_2$ (as 8T26) | $1$ | $0$ |
| 4.3e2_5e2_11e4.8t26.4c1 | $4$ | $ 3^{2} \cdot 5^{2} \cdot 11^{4}$ | $x^{8} - x^{7} - 5 x^{6} + 9 x^{5} + x^{4} - 8 x^{3} + 3 x + 1$ | $(C_4^2 : C_2):C_2$ (as 8T26) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.