Normalized defining polynomial
\( x^{8} - x^{7} + 2x^{6} - 2x^{5} + 4x^{4} - 5x^{3} + 4x^{2} - 3x + 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-4584491\)
\(\medspace = -\,19\cdot 101\cdot 2389\)
|
| |
| Root discriminant: | \(6.80\) |
| |
| Galois root discriminant: | $19^{1/2}101^{1/2}2389^{1/2}\approx 2141.1424520568453$ | ||
| Ramified primes: |
\(19\), \(101\), \(2389\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-4584491}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{7}-a^{6}+2a^{5}-2a^{4}+4a^{3}-5a^{2}+4a-3$, $4a^{7}-2a^{6}+7a^{5}-4a^{4}+14a^{3}-12a^{2}+10a-6$, $2a^{7}-a^{6}+3a^{5}-2a^{4}+6a^{3}-6a^{2}+3a-2$, $2a^{7}+4a^{5}-a^{4}+7a^{3}-4a^{2}+5a-4$
|
| |
| Regulator: | \( 0.8688179378958599 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 0.8688179378958599 \cdot 1}{2\cdot\sqrt{4584491}}\cr\approx \mathstrut & 0.201304191349461 \end{aligned}\]
Galois group
| A non-solvable group of order 40320 |
| The 22 conjugacy class representatives for $S_8$ |
| Character table for $S_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 16 sibling: | deg 16 |
| Degree 28 sibling: | deg 28 |
| Degree 30 sibling: | deg 30 |
| Degree 35 sibling: | deg 35 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | R | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.5.1.0a1.1 | $x^{5} + 5 x + 17$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
|
\(101\)
| $\Q_{101}$ | $x + 99$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 101.1.2.1a1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.2.1.0a1.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 101.3.1.0a1.1 | $x^{3} + 3 x + 99$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(2389\)
| $\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |