Properties

Label 8.2.423564751.1
Degree $8$
Signature $[2, 3]$
Discriminant $-\,751^{3}$
Root discriminant $11.98$
Ramified prime $751$
Class number $1$
Class group Trivial
Galois group $\textrm{GL(2,3)}$ (as 8T23)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, 7, -21, 17, -9, 4, -2, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 2*x^6 + 4*x^5 - 9*x^4 + 17*x^3 - 21*x^2 + 7*x - 4)
 
gp: K = bnfinit(x^8 - x^7 - 2*x^6 + 4*x^5 - 9*x^4 + 17*x^3 - 21*x^2 + 7*x - 4, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} - 2 x^{6} + 4 x^{5} - 9 x^{4} + 17 x^{3} - 21 x^{2} + 7 x - 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-423564751=-\,751^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $751$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{6} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{124} a^{7} + \frac{7}{124} a^{6} - \frac{2}{31} a^{5} + \frac{33}{124} a^{4} - \frac{6}{31} a^{3} - \frac{5}{31} a^{2} - \frac{57}{124} a + \frac{4}{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 37.2086722771 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\GL(2,3)$ (as 8T23):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 8 conjugacy class representatives for $\textrm{GL(2,3)}$
Character table for $\textrm{GL(2,3)}$

Intermediate fields

4.2.751.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 24 sibling: data not computed
Arithmetically equvalently sibling: 8.2.423564751.2

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
751Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.751.2t1.1c1$1$ $ 751 $ $x^{2} - x + 188$ $C_2$ (as 2T1) $1$ $-1$
2.751.3t2.1c1$2$ $ 751 $ $x^{3} - x^{2} + 6 x - 1$ $S_3$ (as 3T2) $1$ $0$
2.751.24t22.1c1$2$ $ 751 $ $x^{8} - x^{7} - 2 x^{6} + 4 x^{5} - 9 x^{4} + 17 x^{3} - 21 x^{2} + 7 x - 4$ $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
2.751.24t22.1c2$2$ $ 751 $ $x^{8} - x^{7} - 2 x^{6} + 4 x^{5} - 9 x^{4} + 17 x^{3} - 21 x^{2} + 7 x - 4$ $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
3.751e2.6t8.1c1$3$ $ 751^{2}$ $x^{4} - 2 x^{3} + x^{2} - x - 1$ $S_4$ (as 4T5) $1$ $-1$
* 3.751.4t5.1c1$3$ $ 751 $ $x^{4} - 2 x^{3} + x^{2} - x - 1$ $S_4$ (as 4T5) $1$ $1$
* 4.751e2.8t23.1c1$4$ $ 751^{2}$ $x^{8} - x^{7} - 2 x^{6} + 4 x^{5} - 9 x^{4} + 17 x^{3} - 21 x^{2} + 7 x - 4$ $\textrm{GL(2,3)}$ (as 8T23) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.