Normalized defining polynomial
\( x^{8} - 2 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + x^{2} - 6 x - 2 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-363483392=-\,2^{8}\cdot 17^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36.5334876323 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_4$ (as 8T30):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$ |
| Character table for $(((C_4 \times C_2): C_2):C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.1156.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_17.2t1.1c1 | $1$ | $ 2^{2} \cdot 17 $ | $x^{2} + 17$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.17.2t1.1c1 | $1$ | $ 17 $ | $x^{2} - x - 4$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e2_17.4t1.1c1 | $1$ | $ 2^{2} \cdot 17 $ | $x^{4} + 17 x^{2} + 68$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.17.4t1.1c1 | $1$ | $ 17 $ | $x^{4} - x^{3} - 6 x^{2} + x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.17.4t1.1c2 | $1$ | $ 17 $ | $x^{4} - x^{3} - 6 x^{2} + x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e2_17.4t1.1c2 | $1$ | $ 2^{2} \cdot 17 $ | $x^{4} + 17 x^{2} + 68$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 2.2e2_17e2.4t3.1c1 | $2$ | $ 2^{2} \cdot 17^{2}$ | $x^{4} - 17$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 2.2e2_17.4t3.2c1 | $2$ | $ 2^{2} \cdot 17 $ | $x^{4} - x^{3} - 2 x^{2} - x + 1$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| 4.2e6_17e3.8t30.7c1 | $4$ | $ 2^{6} \cdot 17^{3}$ | $x^{8} - 2 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + x^{2} - 6 x - 2$ | $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) | $1$ | $0$ | |
| 4.2e8_17e3.8t21.3c1 | $4$ | $ 2^{8} \cdot 17^{3}$ | $x^{8} - 2 x^{7} + 12 x^{5} - 2 x^{4} - 16 x^{3} + 24 x^{2} + 48 x + 20$ | $C_2^3 : C_4 $ (as 8T19) | $1$ | $0$ | |
| * | 4.2e6_17e3.8t30.8c1 | $4$ | $ 2^{6} \cdot 17^{3}$ | $x^{8} - 2 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + x^{2} - 6 x - 2$ | $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) | $1$ | $0$ |