Properties

Label 8.2.339290683.1
Degree $8$
Signature $[2, 3]$
Discriminant $-\,43\cdot 53^{4}$
Root discriminant $11.65$
Ramified primes $43, 53$
Class number $1$
Class group Trivial
Galois group $S_4\wr C_2$ (as 8T47)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 4, -4, 0, 5, 0, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 5*x^5 - 4*x^3 + 4*x^2 - 5*x + 1)
 
gp: K = bnfinit(x^8 - 3*x^7 + 5*x^5 - 4*x^3 + 4*x^2 - 5*x + 1, 1)
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-339290683=-\,43\cdot 53^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $43, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{3}{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{5}{7} a^{7} - \frac{11}{7} a^{6} - \frac{6}{7} a^{5} + \frac{16}{7} a^{4} + \frac{10}{7} a^{3} - \frac{12}{7} a^{2} + \frac{16}{7} a - \frac{15}{7} \),  \( a \),  \( \frac{3}{7} a^{7} - \frac{8}{7} a^{6} - \frac{5}{7} a^{5} + \frac{18}{7} a^{4} + \frac{13}{7} a^{3} - \frac{17}{7} a^{2} - \frac{3}{7} a - \frac{9}{7} \),  \( a^{7} - 2 a^{6} - 2 a^{5} + 3 a^{4} + 3 a^{3} - a^{2} + 3 a - 2 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13.4841413118 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_4\wr C_2$ (as 8T47):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1152
The 20 conjugacy class representatives for $S_4\wr C_2$
Character table for $S_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{53}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ R ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
43Data not computed
53Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.43.2t1.1c1$1$ $ 43 $ $x^{2} - x + 11$ $C_2$ (as 2T1) $1$ $-1$
1.43_53.2t1.1c1$1$ $ 43 \cdot 53 $ $x^{2} - x + 570$ $C_2$ (as 2T1) $1$ $-1$
* 1.53.2t1.1c1$1$ $ 53 $ $x^{2} - x - 13$ $C_2$ (as 2T1) $1$ $1$
2.43_53.4t3.2c1$2$ $ 43 \cdot 53 $ $x^{4} - x^{3} + 9 x^{2} + x + 1$ $D_{4}$ (as 4T3) $1$ $0$
4.43e2_53.6t13.1c1$4$ $ 43^{2} \cdot 53 $ $x^{6} - 3 x^{5} + 8 x^{4} - 10 x^{3} + 11 x^{2} - 10 x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.43e3_53e2.12t34.1c1$4$ $ 43^{3} \cdot 53^{2}$ $x^{6} - 3 x^{5} + 8 x^{4} - 10 x^{3} + 11 x^{2} - 10 x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $-2$
4.43e2_53e3.12t34.1c1$4$ $ 43^{2} \cdot 53^{3}$ $x^{6} - 3 x^{5} + 8 x^{4} - 10 x^{3} + 11 x^{2} - 10 x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.43_53e2.6t13.1c1$4$ $ 43 \cdot 53^{2}$ $x^{6} - 3 x^{5} + 8 x^{4} - 10 x^{3} + 11 x^{2} - 10 x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $2$
6.43e4_53e3.12t201.1c1$6$ $ 43^{4} \cdot 53^{3}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $2$
6.43e5_53e3.12t202.1c1$6$ $ 43^{5} \cdot 53^{3}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $0$
* 6.43_53e3.8t47.1c1$6$ $ 43 \cdot 53^{3}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $0$
6.43e2_53e3.12t200.1c1$6$ $ 43^{2} \cdot 53^{3}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $-2$
9.43e3_53e3.16t1294.1c1$9$ $ 43^{3} \cdot 53^{3}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $-1$
9.43e6_53e3.18t272.1c1$9$ $ 43^{6} \cdot 53^{3}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $1$
9.43e6_53e6.18t273.1c1$9$ $ 43^{6} \cdot 53^{6}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $1$
9.43e3_53e6.18t274.1c1$9$ $ 43^{3} \cdot 53^{6}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $-1$
12.43e7_53e6.36t1944.1c1$12$ $ 43^{7} \cdot 53^{6}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $-2$
12.43e5_53e6.24t2821.1c1$12$ $ 43^{5} \cdot 53^{6}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $2$
18.43e9_53e9.36t1758.1c1$18$ $ 43^{9} \cdot 53^{9}$ $x^{8} - 3 x^{7} + 5 x^{5} - 4 x^{3} + 4 x^{2} - 5 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.