Normalized defining polynomial
\( x^{8} - 3x^{7} + 4x^{6} - 8x^{5} + 8x^{4} - x^{3} + 2x^{2} - 3x - 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-22665187\)
\(\medspace = -\,283^{3}\)
|
| |
| Root discriminant: | \(8.31\) |
| |
| Galois root discriminant: | $283^{1/2}\approx 16.822603841260722$ | ||
| Ramified primes: |
\(283\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-283}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{67}a^{7}-\frac{28}{67}a^{6}-\frac{33}{67}a^{5}+\frac{13}{67}a^{4}+\frac{18}{67}a^{3}+\frac{18}{67}a^{2}+\frac{21}{67}a+\frac{8}{67}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{37}{67}a^{7}-\frac{98}{67}a^{6}+\frac{119}{67}a^{5}-\frac{256}{67}a^{4}+\frac{197}{67}a^{3}-\frac{4}{67}a^{2}+\frac{40}{67}a-\frac{39}{67}$, $\frac{19}{67}a^{7}-\frac{63}{67}a^{6}+\frac{110}{67}a^{5}-\frac{222}{67}a^{4}+\frac{275}{67}a^{3}-\frac{194}{67}a^{2}+\frac{131}{67}a-\frac{49}{67}$, $\frac{26}{67}a^{7}-\frac{58}{67}a^{6}+\frac{80}{67}a^{5}-\frac{198}{67}a^{4}+\frac{133}{67}a^{3}-\frac{68}{67}a^{2}+\frac{77}{67}a-\frac{60}{67}$, $\frac{26}{67}a^{7}-\frac{58}{67}a^{6}+\frac{80}{67}a^{5}-\frac{198}{67}a^{4}+\frac{133}{67}a^{3}-\frac{68}{67}a^{2}+\frac{77}{67}a+\frac{7}{67}$
|
| |
| Regulator: | \( 2.50378244423 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 2.50378244423 \cdot 1}{2\cdot\sqrt{22665187}}\cr\approx \mathstrut & 0.260907484371 \end{aligned}\]
Galois group
$\GL(2,3)$ (as 8T23):
| A solvable group of order 48 |
| The 8 conjugacy class representatives for $\textrm{GL(2,3)}$ |
| Character table for $\textrm{GL(2,3)}$ |
Intermediate fields
| 4.2.283.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 sibling: | deg 16 |
| Degree 24 sibling: | deg 24 |
| Arithmetically equivalent sibling: | 8.2.22665187.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | ${\href{/padicField/3.8.0.1}{8} }$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }$ | ${\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(283\)
| $\Q_{283}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{283}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *48 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.283.2t1.a.a | $1$ | $ 283 $ | \(\Q(\sqrt{-283}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.283.3t2.a.a | $2$ | $ 283 $ | 3.1.283.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.283.24t22.a.a | $2$ | $ 283 $ | 8.2.22665187.3 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 2.283.24t22.a.b | $2$ | $ 283 $ | 8.2.22665187.3 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 3.80089.6t8.d.a | $3$ | $ 283^{2}$ | 4.2.283.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
| *48 | 3.283.4t5.b.a | $3$ | $ 283 $ | 4.2.283.1 | $S_4$ (as 4T5) | $1$ | $1$ |
| *48 | 4.80089.8t23.a.a | $4$ | $ 283^{2}$ | 8.2.22665187.3 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ |