Normalized defining polynomial
\( x^{8} - 2 x^{6} - 8 x^{4} + 22 x^{2} - 9 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1871773696=-\,2^{16}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{12} a^{7} + \frac{1}{12} a^{5} + \frac{1}{12} a^{3} + \frac{1}{12} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{7}{4} a^{2} + \frac{11}{4} \), \( \frac{1}{12} a^{7} - \frac{5}{12} a^{5} - \frac{11}{12} a^{3} + \frac{43}{12} a \), \( \frac{1}{2} a^{7} + \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{9}{2} a^{3} - \frac{9}{2} a^{2} + \frac{13}{2} a + \frac{11}{2} \), \( \frac{1}{2} a^{7} - \frac{3}{4} a^{6} - a^{5} + \frac{3}{4} a^{4} - \frac{9}{2} a^{3} + \frac{25}{4} a^{2} + 11 a - \frac{37}{4} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61.0598314827 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 8T15):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $Z_8 : Z_8^\times$ |
| Character table for $Z_8 : Z_8^\times$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.2.2704.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
| Arithmetically equvalently sibling: | 8.2.1871773696.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3.2t1.2c1 | $1$ | $ 2^{3}$ | $x^{2} + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.13.2t1.1c1 | $1$ | $ 13 $ | $x^{2} - x - 3$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e3_13.2t1.2c1 | $1$ | $ 2^{3} \cdot 13 $ | $x^{2} + 26$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_13.2t1.1c1 | $1$ | $ 2^{2} \cdot 13 $ | $x^{2} + 13$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_13.2t1.1c1 | $1$ | $ 2^{3} \cdot 13 $ | $x^{2} - 26$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 2.2e4_13.4t3.1c1 | $2$ | $ 2^{4} \cdot 13 $ | $x^{4} - 3 x^{2} - 1$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| 2.2e6_13.4t3.1c1 | $2$ | $ 2^{6} \cdot 13 $ | $x^{4} - 6 x^{2} - 4$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 4.2e12_13e2.8t15.1c1 | $4$ | $ 2^{12} \cdot 13^{2}$ | $x^{8} - 2 x^{6} - 8 x^{4} + 22 x^{2} - 9$ | $Z_8 : Z_8^\times$ (as 8T15) | $1$ | $0$ |