Normalized defining polynomial
\( x^{8} - 3 x^{7} + 9 x^{5} - 15 x^{4} + 21 x^{3} - 21 x^{2} + 12 x - 3 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17256481947=-\,3^{7}\cdot 53^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a - 1 \), \( \frac{4}{5} a^{7} - \frac{4}{5} a^{6} - \frac{18}{5} a^{5} + 4 a^{4} + a^{3} + \frac{19}{5} a^{2} + \frac{19}{5} a - \frac{29}{5} \), \( \frac{8}{5} a^{7} - \frac{28}{5} a^{6} + \frac{4}{5} a^{5} + 18 a^{4} - 28 a^{3} + \frac{163}{5} a^{2} - \frac{187}{5} a + \frac{82}{5} \), \( \frac{12}{5} a^{7} - \frac{32}{5} a^{6} - \frac{14}{5} a^{5} + 22 a^{4} - 27 a^{3} + \frac{182}{5} a^{2} - \frac{168}{5} a + \frac{53}{5} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62.5978134234 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,3)$ (as 8T23):
| A solvable group of order 48 |
| The 8 conjugacy class representatives for $\textrm{GL(2,3)}$ |
| Character table for $\textrm{GL(2,3)}$ |
Intermediate fields
| 4.2.75843.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently sibling: | 8.2.17256481947.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.3.2.1 | $x^{3} - 53$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 53.3.2.1 | $x^{3} - 53$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3_53e2.3t2.1c1 | $2$ | $ 3 \cdot 53^{2}$ | $x^{3} - 53$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.3e2_53e2.24t22.2c1 | $2$ | $ 3^{2} \cdot 53^{2}$ | $x^{8} - 3 x^{7} + 9 x^{5} - 15 x^{4} + 21 x^{3} - 21 x^{2} + 12 x - 3$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 2.3e2_53e2.24t22.2c2 | $2$ | $ 3^{2} \cdot 53^{2}$ | $x^{8} - 3 x^{7} + 9 x^{5} - 15 x^{4} + 21 x^{3} - 21 x^{2} + 12 x - 3$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 3.3e2_53e2.6t8.1c1 | $3$ | $ 3^{2} \cdot 53^{2}$ | $x^{4} - x^{3} - 6 x^{2} + 8 x - 5$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.3e3_53e2.4t5.1c1 | $3$ | $ 3^{3} \cdot 53^{2}$ | $x^{4} - x^{3} - 6 x^{2} + 8 x - 5$ | $S_4$ (as 4T5) | $1$ | $1$ |
| * | 4.3e4_53e2.8t23.2c1 | $4$ | $ 3^{4} \cdot 53^{2}$ | $x^{8} - 3 x^{7} + 9 x^{5} - 15 x^{4} + 21 x^{3} - 21 x^{2} + 12 x - 3$ | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ |