Properties

Label 8.2.16836267547.1
Degree $8$
Signature $[2, 3]$
Discriminant $-\,11^{3}\cdot 233^{3}$
Root discriminant $18.98$
Ramified primes $11, 233$
Class number $1$
Class group Trivial
Galois Group $\textrm{GL(2,3)}$ (as 8T23)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, -75, -60, 1, 13, -4, -4, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^6 - 4*x^5 + 13*x^4 + x^3 - 60*x^2 - 75*x - 41)
gp: K = bnfinit(x^8 - 4*x^6 - 4*x^5 + 13*x^4 + x^3 - 60*x^2 - 75*x - 41, 1)

Normalized defining polynomial

\(x^{8} \) \(\mathstrut -\mathstrut 4 x^{6} \) \(\mathstrut -\mathstrut 4 x^{5} \) \(\mathstrut +\mathstrut 13 x^{4} \) \(\mathstrut +\mathstrut x^{3} \) \(\mathstrut -\mathstrut 60 x^{2} \) \(\mathstrut -\mathstrut 75 x \) \(\mathstrut -\mathstrut 41 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $8$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[2, 3]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-16836267547=-\,11^{3}\cdot 233^{3}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $18.98$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $11, 233$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{9653} a^{7} + \frac{457}{9653} a^{6} - \frac{503}{1379} a^{5} + \frac{2950}{9653} a^{4} - \frac{3257}{9653} a^{3} - \frac{1886}{9653} a^{2} - \frac{2845}{9653} a + \frac{2915}{9653}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $4$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 92.1206248305 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$\GL(2,3)$ (as 8T23):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 48
The 8 conjugacy class representatives for $\textrm{GL(2,3)}$
Character table for $\textrm{GL(2,3)}$

Intermediate fields

4.2.2563.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 24 sibling: data not computed
Arithmetically equvalently sibling: 8.2.16836267547.4

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
233Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.11_233.2t1.1c1$1$ $ 11 \cdot 233 $ $x^{2} - x + 641$ $C_2$ (as 2T1) $1$ $-1$
2.11_233.3t2.1c1$2$ $ 11 \cdot 233 $ $x^{3} - x^{2} + x - 10$ $S_3$ (as 3T2) $1$ $0$
2.11_233.24t22.1c1$2$ $ 11 \cdot 233 $ $x^{8} - 4 x^{6} - 4 x^{5} + 13 x^{4} + x^{3} - 60 x^{2} - 75 x - 41$ $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
2.11_233.24t22.1c2$2$ $ 11 \cdot 233 $ $x^{8} - 4 x^{6} - 4 x^{5} + 13 x^{4} + x^{3} - 60 x^{2} - 75 x - 41$ $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
3.11e2_233e2.6t8.1c1$3$ $ 11^{2} \cdot 233^{2}$ $x^{4} - 2 x^{3} + 4 x^{2} - x - 1$ $S_4$ (as 4T5) $1$ $-1$
* 3.11_233.4t5.1c1$3$ $ 11 \cdot 233 $ $x^{4} - 2 x^{3} + 4 x^{2} - x - 1$ $S_4$ (as 4T5) $1$ $1$
* 4.11e2_233e2.8t23.1c1$4$ $ 11^{2} \cdot 233^{2}$ $x^{8} - 4 x^{6} - 4 x^{5} + 13 x^{4} + x^{3} - 60 x^{2} - 75 x - 41$ $\textrm{GL(2,3)}$ (as 8T23) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.