Normalized defining polynomial
\( x^{8} - x^{7} + 4 x^{6} - x^{5} + 7 x^{4} - 10 x^{3} - 8 x^{2} + 14 x - 5 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1517535243=-\,3^{7}\cdot 7^{4}\cdot 17^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{125} a^{7} + \frac{11}{125} a^{6} + \frac{11}{125} a^{5} + \frac{6}{125} a^{4} - \frac{46}{125} a^{3} - \frac{62}{125} a^{2} - \frac{2}{125} a - \frac{2}{25}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37.4830482781 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 8T15):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $Z_8 : Z_8^\times$ |
| Character table for $Z_8 : Z_8^\times$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 4.2.1323.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
| Arithmetically equvalently sibling: | 8.2.1517535243.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.17.2t1.1c1 | $1$ | $ 17 $ | $x^{2} - x - 4$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_17.2t1.1c1 | $1$ | $ 3 \cdot 17 $ | $x^{2} - x + 13$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3_7.2t1.1c1 | $1$ | $ 3 \cdot 7 $ | $x^{2} - x - 5$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3_7_17.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 17 $ | $x^{2} - x - 89$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.7.2t1.1c1 | $1$ | $ 7 $ | $x^{2} - x + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.7_17.2t1.1c1 | $1$ | $ 7 \cdot 17 $ | $x^{2} - x + 30$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.3e2_7.4t3.2c1 | $2$ | $ 3^{2} \cdot 7 $ | $x^{4} - x^{3} + 2 x + 1$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| 2.3e2_7_17e2.4t3.2c1 | $2$ | $ 3^{2} \cdot 7 \cdot 17^{2}$ | $x^{4} - x^{3} + 39 x^{2} - 13 x + 373$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 4.3e4_7e2_17e2.8t15.2c1 | $4$ | $ 3^{4} \cdot 7^{2} \cdot 17^{2}$ | $x^{8} - x^{7} + 4 x^{6} - x^{5} + 7 x^{4} - 10 x^{3} - 8 x^{2} + 14 x - 5$ | $Z_8 : Z_8^\times$ (as 8T15) | $1$ | $0$ |