Normalized defining polynomial
\( x^{8} - 4 x^{7} + 7 x^{6} - 6 x^{5} - 3 x^{4} + 9 x^{3} - x^{2} - 5 x - 1 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-150730227=-\,3^{7}\cdot 41^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{2}{3} a^{7} - 3 a^{6} + 6 a^{5} - 7 a^{4} + 2 a^{3} + 4 a^{2} - \frac{5}{3} a - 1 \), \( a \), \( a^{2} - a - 1 \), \( \frac{1}{3} a^{7} - \frac{5}{3} a^{6} + 4 a^{5} - 6 a^{4} + 5 a^{3} - a^{2} - \frac{4}{3} a + \frac{2}{3} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14.3057573471 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,3)$ (as 8T23):
| A solvable group of order 48 |
| The 8 conjugacy class representatives for $\textrm{GL(2,3)}$ |
| Character table for $\textrm{GL(2,3)}$ |
Intermediate fields
| 4.2.1107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently sibling: | 8.2.150730227.4 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 41 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_41.2t1.1c1 | $1$ | $ 3 \cdot 41 $ | $x^{2} - x + 31$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3e3_41.3t2.1c1 | $2$ | $ 3^{3} \cdot 41 $ | $x^{3} + 6 x - 3$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.3e3_41.24t22.2c1 | $2$ | $ 3^{3} \cdot 41 $ | $x^{8} - 4 x^{7} + 7 x^{6} - 6 x^{5} - 3 x^{4} + 9 x^{3} - x^{2} - 5 x - 1$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 2.3e3_41.24t22.2c2 | $2$ | $ 3^{3} \cdot 41 $ | $x^{8} - 4 x^{7} + 7 x^{6} - 6 x^{5} - 3 x^{4} + 9 x^{3} - x^{2} - 5 x - 1$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 3.3e4_41e2.6t8.2c1 | $3$ | $ 3^{4} \cdot 41^{2}$ | $x^{4} - x^{3} - 2 x - 1$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.3e3_41.4t5.1c1 | $3$ | $ 3^{3} \cdot 41 $ | $x^{4} - x^{3} - 2 x - 1$ | $S_4$ (as 4T5) | $1$ | $1$ |
| * | 4.3e4_41e2.8t23.2c1 | $4$ | $ 3^{4} \cdot 41^{2}$ | $x^{8} - 4 x^{7} + 7 x^{6} - 6 x^{5} - 3 x^{4} + 9 x^{3} - x^{2} - 5 x - 1$ | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ |