Normalized defining polynomial
\( x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{4} + 10 x^{3} - 40 x^{2} + 32 x + 13 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11977812992=-\,2^{10}\cdot 227^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{64763} a^{7} - \frac{24004}{64763} a^{6} - \frac{4391}{64763} a^{5} + \frac{32161}{64763} a^{4} - \frac{17680}{64763} a^{3} - \frac{1209}{64763} a^{2} + \frac{6972}{64763} a - \frac{8264}{64763}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107.131591344 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,3)$ (as 8T23):
| A solvable group of order 48 |
| The 8 conjugacy class representatives for $\textrm{GL(2,3)}$ |
| Character table for $\textrm{GL(2,3)}$ |
Intermediate fields
| 4.2.3632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently sibling: | 8.2.11977812992.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.10.2 | $x^{8} + 20 x^{2} + 20$ | $8$ | $1$ | $10$ | $\textrm{GL(2,3)}$ | $[4/3, 4/3, 3/2]_{3}^{2}$ |
| 227 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.227.2t1.1c1 | $1$ | $ 227 $ | $x^{2} - x + 57$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e2_227.3t2.1c1 | $2$ | $ 2^{2} \cdot 227 $ | $x^{3} - 4 x - 12$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e3_227.24t22.2c1 | $2$ | $ 2^{3} \cdot 227 $ | $x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{4} + 10 x^{3} - 40 x^{2} + 32 x + 13$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 2.2e3_227.24t22.2c2 | $2$ | $ 2^{3} \cdot 227 $ | $x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{4} + 10 x^{3} - 40 x^{2} + 32 x + 13$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 3.2e4_227e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 227^{2}$ | $x^{4} - 2 x^{3} - 2 x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.2e4_227.4t5.1c1 | $3$ | $ 2^{4} \cdot 227 $ | $x^{4} - 2 x^{3} - 2 x + 2$ | $S_4$ (as 4T5) | $1$ | $1$ |
| * | 4.2e6_227e2.8t23.2c1 | $4$ | $ 2^{6} \cdot 227^{2}$ | $x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{4} + 10 x^{3} - 40 x^{2} + 32 x + 13$ | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ |