Properties

Label 8.2.119439360000.2
Degree $8$
Signature $[2, 3]$
Discriminant $-119439360000$
Root discriminant \(24.25\)
Ramified primes $2,3,5$
Class number $1$
Class group trivial
Galois group $S_4\wr C_2$ (as 8T47)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16)
 
gp: K = bnfinit(y^8 - 2*y^6 - 12*y^5 + 6*y^4 + 48*y^3 - 32*y^2 + 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16)
 

\( x^{8} - 2x^{6} - 12x^{5} + 6x^{4} + 48x^{3} - 32x^{2} + 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-119439360000\) \(\medspace = -\,2^{18}\cdot 3^{6}\cdot 5^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}3^{3/4}5^{2/3}\approx 44.838743292597435$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{4}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2600}a^{7}+\frac{32}{325}a^{6}+\frac{267}{1300}a^{5}+\frac{24}{325}a^{4}-\frac{121}{1300}a^{3}+\frac{62}{325}a^{2}-\frac{57}{325}a+\frac{33}{325}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{29}{1300}a^{7}-\frac{51}{1300}a^{6}-\frac{57}{650}a^{5}-\frac{141}{650}a^{4}+\frac{391}{650}a^{3}+\frac{1017}{650}a^{2}-\frac{706}{325}a-\frac{361}{325}$, $\frac{383}{1300}a^{7}-\frac{51}{650}a^{6}-\frac{439}{650}a^{5}-\frac{1116}{325}a^{4}+\frac{1757}{650}a^{3}+\frac{4917}{325}a^{2}-\frac{4337}{325}a+\frac{253}{325}$, $\frac{8}{65}a^{7}-\frac{63}{260}a^{6}+\frac{29}{130}a^{5}-\frac{243}{130}a^{4}+\frac{274}{65}a^{3}-\frac{319}{130}a^{2}-\frac{8}{65}a+\frac{97}{65}$, $\frac{33}{260}a^{7}-\frac{1}{130}a^{6}-\frac{47}{65}a^{5}-\frac{41}{65}a^{4}+\frac{297}{130}a^{3}+\frac{127}{65}a^{2}-\frac{252}{65}a+\frac{163}{65}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 922.131306311 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 922.131306311 \cdot 1}{2\cdot\sqrt{119439360000}}\cr\approx \mathstrut & 1.32369714903 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^6 - 12*x^5 + 6*x^4 + 48*x^3 - 32*x^2 + 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4\wr C_2$ (as 8T47):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1152
The 20 conjugacy class representatives for $S_4\wr C_2$
Character table for $S_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{2}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }$ ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.4.0.1}{4} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.10.2$x^{4} + 4 x^{3} + 2$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
\(3\) Copy content Toggle raw display 3.8.6.3$x^{8} - 6 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
\(5\) Copy content Toggle raw display 5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.6.4.2$x^{6} + 10 x^{3} - 25$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.8.2t1.a.a$1$ $ 2^{3}$ \(\Q(\sqrt{2}) \) $C_2$ (as 2T1) $1$ $1$
2.1152.4t3.c.a$2$ $ 2^{7} \cdot 3^{2}$ 4.0.4608.1 $D_{4}$ (as 4T3) $1$ $0$
4.1843200.12t34.b.a$4$ $ 2^{13} \cdot 3^{2} \cdot 5^{2}$ 6.0.460800.1 $C_3^2:D_4$ (as 6T13) $1$ $0$
4.23040000.12t34.b.a$4$ $ 2^{12} \cdot 3^{2} \cdot 5^{4}$ 6.0.460800.1 $C_3^2:D_4$ (as 6T13) $1$ $-2$
4.115200.6t13.b.a$4$ $ 2^{9} \cdot 3^{2} \cdot 5^{2}$ 6.0.460800.1 $C_3^2:D_4$ (as 6T13) $1$ $0$
4.5760000.6t13.b.a$4$ $ 2^{10} \cdot 3^{2} \cdot 5^{4}$ 6.0.460800.1 $C_3^2:D_4$ (as 6T13) $1$ $2$
6.6635520000.12t201.a.a$6$ $ 2^{17} \cdot 3^{4} \cdot 5^{4}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $2$
6.14929920000.12t202.a.a$6$ $ 2^{15} \cdot 3^{6} \cdot 5^{4}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $0$
* 6.14929920000.8t47.a.a$6$ $ 2^{15} \cdot 3^{6} \cdot 5^{4}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $0$
6.26542080000.12t200.a.a$6$ $ 2^{19} \cdot 3^{4} \cdot 5^{4}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $-2$
9.238...000.16t1294.a.a$9$ $ 2^{21} \cdot 3^{6} \cdot 5^{6}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $-1$
9.238...000.18t272.a.a$9$ $ 2^{21} \cdot 3^{6} \cdot 5^{6}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $1$
9.764...000.18t273.b.a$9$ $ 2^{26} \cdot 3^{6} \cdot 5^{6}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $1$
9.305...000.18t274.b.a$9$ $ 2^{28} \cdot 3^{6} \cdot 5^{6}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $-1$
12.396...000.36t1763.a.a$12$ $ 2^{34} \cdot 3^{10} \cdot 5^{8}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $-2$
12.990...000.24t2821.a.a$12$ $ 2^{32} \cdot 3^{10} \cdot 5^{8}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $2$
18.262...000.36t1758.a.a$18$ $ 2^{51} \cdot 3^{14} \cdot 5^{12}$ 8.2.119439360000.2 $S_4\wr C_2$ (as 8T47) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.