Normalized defining polynomial
\( x^{8} - 2x^{7} - 2x^{6} + 6x^{5} + 84x^{3} + 72x^{2} + 72x - 36 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-1093500000000\) \(\medspace = -\,2^{8}\cdot 3^{7}\cdot 5^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.98\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{31/28}3^{25/18}5^{39/20}\approx 228.52995139973822$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-15}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{6}a^{5}+\frac{1}{6}a^{4}-\frac{1}{3}a^{3}$, $\frac{1}{30}a^{6}+\frac{1}{30}a^{5}-\frac{1}{6}a^{4}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{2850}a^{7}+\frac{16}{1425}a^{6}+\frac{68}{1425}a^{5}-\frac{4}{95}a^{4}-\frac{28}{285}a^{3}+\frac{169}{475}a^{2}+\frac{58}{475}a+\frac{84}{475}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{73}{2850}a^{7}-\frac{67}{1425}a^{6}-\frac{71}{1425}a^{5}+\frac{53}{570}a^{4}+\frac{46}{285}a^{3}+\frac{937}{475}a^{2}+\frac{1004}{475}a+\frac{1002}{475}$, $\frac{26}{1425}a^{7}-\frac{23}{1425}a^{6}-\frac{169}{1425}a^{5}-\frac{18}{95}a^{4}-\frac{31}{285}a^{3}+\frac{713}{475}a^{2}+\frac{926}{475}a+\frac{853}{475}$, $\frac{61}{2850}a^{7}-\frac{164}{1425}a^{6}+\frac{791}{2850}a^{5}-\frac{229}{570}a^{4}+\frac{64}{95}a^{3}-\frac{141}{475}a^{2}+\frac{593}{475}a-\frac{196}{475}$, $\frac{139}{2850}a^{7}-\frac{17}{2850}a^{6}+\frac{63}{950}a^{5}-\frac{11}{570}a^{4}-\frac{187}{285}a^{3}+\frac{216}{475}a^{2}-\frac{298}{475}a+\frac{466}{475}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2320.49602936 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 2320.49602936 \cdot 1}{2\cdot\sqrt{1093500000000}}\cr\approx \mathstrut & 1.10088267387 \end{aligned}\]
Galois group
A non-solvable group of order 40320 |
The 22 conjugacy class representatives for $S_8$ |
Character table for $S_8$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 16 sibling: | deg 16 |
Degree 28 sibling: | deg 28 |
Degree 30 sibling: | deg 30 |
Degree 35 sibling: | deg 35 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.13 | $x^{8} + 2 x + 2$ | $8$ | $1$ | $8$ | $C_2^3:(C_7: C_3)$ | $[8/7, 8/7, 8/7]_{7}^{3}$ |
\(3\) | 3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.6.6.2 | $x^{6} - 6 x^{5} + 39 x^{4} + 60 x^{3} - 18 x + 9$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.5.9.4 | $x^{5} + 25 x^{2} + 25 x + 5$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |