Normalized defining polynomial
\( x^{8} - 2x^{7} + 2x^{6} + x^{4} + 5x^{3} - 7x^{2} - 6x + 1 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(-107171875\)
\(\medspace = -\,5^{6}\cdot 19^{3}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(10.09\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(5\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{131}a^{7}-\frac{60}{131}a^{6}-\frac{55}{131}a^{5}+\frac{46}{131}a^{4}-\frac{47}{131}a^{3}-\frac{20}{131}a^{2}-\frac{26}{131}a+\frac{61}{131}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{80}{131}a^{7}-\frac{215}{131}a^{6}+\frac{316}{131}a^{5}-\frac{250}{131}a^{4}+\frac{301}{131}a^{3}+\frac{103}{131}a^{2}-\frac{639}{131}a-\frac{98}{131}$, $\frac{25}{131}a^{7}-\frac{59}{131}a^{6}+\frac{66}{131}a^{5}-\frac{29}{131}a^{4}+\frac{4}{131}a^{3}+\frac{155}{131}a^{2}-\frac{257}{131}a-\frac{47}{131}$, $\frac{28}{131}a^{7}-\frac{108}{131}a^{6}+\frac{163}{131}a^{5}-\frac{153}{131}a^{4}+\frac{125}{131}a^{3}-\frac{36}{131}a^{2}-\frac{335}{131}a+\frac{5}{131}$, $\frac{50}{131}a^{7}-\frac{118}{131}a^{6}+\frac{132}{131}a^{5}-\frac{58}{131}a^{4}+\frac{139}{131}a^{3}+\frac{179}{131}a^{2}-\frac{383}{131}a-\frac{225}{131}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 6.79191421448 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$\SD_{16}$ (as 8T8):
A solvable group of order 16 |
The 7 conjugacy class representatives for $QD_{16}$ |
Character table for $QD_{16}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.475.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | ${\href{/padicField/3.8.0.1}{8} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(19\)
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.19.2t1.a.a | $1$ | $ 19 $ | \(\Q(\sqrt{-19}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.95.2t1.a.a | $1$ | $ 5 \cdot 19 $ | \(\Q(\sqrt{-95}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.95.4t3.c.a | $2$ | $ 5 \cdot 19 $ | 4.2.475.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.475.8t8.a.a | $2$ | $ 5^{2} \cdot 19 $ | 8.2.107171875.1 | $QD_{16}$ (as 8T8) | $0$ | $0$ |
* | 2.475.8t8.a.b | $2$ | $ 5^{2} \cdot 19 $ | 8.2.107171875.1 | $QD_{16}$ (as 8T8) | $0$ | $0$ |