Properties

Label 8.0.9682651996416.1
Degree $8$
Signature $[0, 4]$
Discriminant $9.683\times 10^{12}$
Root discriminant \(42.00\)
Ramified primes $2,3,7$
Class number $2$
Class group [2]
Galois group $C_2^3:(C_7: C_3)$ (as 8T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28)
 
gp: K = bnfinit(y^8 - 14*y^6 + 168*y^4 - 504*y^3 + 616*y^2 - 180*y + 28, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28)
 

\( x^{8} - 14x^{6} + 168x^{4} - 504x^{3} + 616x^{2} - 180x + 28 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(9682651996416\) \(\medspace = 2^{8}\cdot 3^{8}\cdot 7^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(42.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{31/28}3^{4/3}7^{26/21}\approx 103.69474346279736$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{6}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{18}a^{6}+\frac{1}{3}a^{2}-\frac{1}{9}$, $\frac{1}{9414}a^{7}+\frac{139}{9414}a^{6}-\frac{63}{1046}a^{5}-\frac{121}{3138}a^{4}-\frac{275}{1569}a^{3}+\frac{131}{523}a^{2}-\frac{2125}{4707}a-\frac{2062}{4707}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{887}{4707}a^{7}+\frac{253}{9414}a^{6}-\frac{8411}{3138}a^{5}-\frac{635}{1569}a^{4}+\frac{50840}{1569}a^{3}-\frac{46888}{523}a^{2}+\frac{441446}{4707}a-\frac{32029}{4707}$, $\frac{536}{4707}a^{7}+\frac{5183}{9414}a^{6}-\frac{1253}{3138}a^{5}-\frac{9941}{1569}a^{4}+\frac{3833}{1569}a^{3}+\frac{21724}{1569}a^{2}-\frac{24916}{4707}a+\frac{4441}{4707}$, $\frac{2713}{4707}a^{7}+\frac{6823}{4707}a^{6}-\frac{21877}{3138}a^{5}-\frac{74447}{3138}a^{4}+\frac{107707}{1569}a^{3}-\frac{8319}{523}a^{2}+\frac{8176}{4707}a+\frac{1696}{4707}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2028.31714907 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2028.31714907 \cdot 2}{2\cdot\sqrt{9682651996416}}\cr\approx \mathstrut & 1.01591687527 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 14*x^6 + 168*x^4 - 504*x^3 + 616*x^2 - 180*x + 28);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_8:C_3$ (as 8T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 168
The 8 conjugacy class representatives for $C_2^3:(C_7: C_3)$
Character table for $C_2^3:(C_7: C_3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: deg 14
Degree 24 sibling: deg 24
Degree 28 sibling: deg 28
Degree 42 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ R ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.13$x^{8} + 2 x + 2$$8$$1$$8$$C_2^3:(C_7: C_3)$$[8/7, 8/7, 8/7]_{7}^{3}$
\(3\) Copy content Toggle raw display 3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.6.8.4$x^{6} + 18 x^{5} + 114 x^{4} + 344 x^{3} + 732 x^{2} + 744 x + 296$$3$$2$$8$$C_6$$[2]^{2}$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.7.8.1$x^{7} + 14 x^{2} + 7$$7$$1$$8$$C_7:C_3$$[4/3]_{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.63.3t1.a.a$1$ $ 3^{2} \cdot 7 $ 3.3.3969.2 $C_3$ (as 3T1) $0$ $1$
1.63.3t1.a.b$1$ $ 3^{2} \cdot 7 $ 3.3.3969.2 $C_3$ (as 3T1) $0$ $1$
3.1555848.7t3.a.a$3$ $ 2^{3} \cdot 3^{4} \cdot 7^{4}$ 7.7.2420662999104.1 $C_7:C_3$ (as 7T3) $0$ $3$
3.1555848.7t3.a.b$3$ $ 2^{3} \cdot 3^{4} \cdot 7^{4}$ 7.7.2420662999104.1 $C_7:C_3$ (as 7T3) $0$ $3$
* 7.968...416.8t36.a.a$7$ $ 2^{8} \cdot 3^{8} \cdot 7^{8}$ 8.0.9682651996416.1 $C_2^3:(C_7: C_3)$ (as 8T36) $1$ $-1$
7.610...208.24t283.a.a$7$ $ 2^{8} \cdot 3^{10} \cdot 7^{9}$ 8.0.9682651996416.1 $C_2^3:(C_7: C_3)$ (as 8T36) $0$ $-1$
7.610...208.24t283.a.b$7$ $ 2^{8} \cdot 3^{10} \cdot 7^{9}$ 8.0.9682651996416.1 $C_2^3:(C_7: C_3)$ (as 8T36) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.