Normalized defining polynomial
\( x^{8} - 14x^{6} + 168x^{4} - 504x^{3} + 616x^{2} - 180x + 28 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(9682651996416\) \(\medspace = 2^{8}\cdot 3^{8}\cdot 7^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(42.00\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{31/28}3^{4/3}7^{26/21}\approx 103.69474346279736$ | ||
Ramified primes: | \(2\), \(3\), \(7\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{6}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{18}a^{6}+\frac{1}{3}a^{2}-\frac{1}{9}$, $\frac{1}{9414}a^{7}+\frac{139}{9414}a^{6}-\frac{63}{1046}a^{5}-\frac{121}{3138}a^{4}-\frac{275}{1569}a^{3}+\frac{131}{523}a^{2}-\frac{2125}{4707}a-\frac{2062}{4707}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{887}{4707}a^{7}+\frac{253}{9414}a^{6}-\frac{8411}{3138}a^{5}-\frac{635}{1569}a^{4}+\frac{50840}{1569}a^{3}-\frac{46888}{523}a^{2}+\frac{441446}{4707}a-\frac{32029}{4707}$, $\frac{536}{4707}a^{7}+\frac{5183}{9414}a^{6}-\frac{1253}{3138}a^{5}-\frac{9941}{1569}a^{4}+\frac{3833}{1569}a^{3}+\frac{21724}{1569}a^{2}-\frac{24916}{4707}a+\frac{4441}{4707}$, $\frac{2713}{4707}a^{7}+\frac{6823}{4707}a^{6}-\frac{21877}{3138}a^{5}-\frac{74447}{3138}a^{4}+\frac{107707}{1569}a^{3}-\frac{8319}{523}a^{2}+\frac{8176}{4707}a+\frac{1696}{4707}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2028.31714907 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2028.31714907 \cdot 2}{2\cdot\sqrt{9682651996416}}\cr\approx \mathstrut & 1.01591687527 \end{aligned}\]
Galois group
A solvable group of order 168 |
The 8 conjugacy class representatives for $C_2^3:(C_7: C_3)$ |
Character table for $C_2^3:(C_7: C_3)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 14 sibling: | deg 14 |
Degree 24 sibling: | deg 24 |
Degree 28 sibling: | deg 28 |
Degree 42 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.13 | $x^{8} + 2 x + 2$ | $8$ | $1$ | $8$ | $C_2^3:(C_7: C_3)$ | $[8/7, 8/7, 8/7]_{7}^{3}$ |
\(3\) | 3.2.0.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
3.6.8.4 | $x^{6} + 18 x^{5} + 114 x^{4} + 344 x^{3} + 732 x^{2} + 744 x + 296$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
\(7\) | $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
7.7.8.1 | $x^{7} + 14 x^{2} + 7$ | $7$ | $1$ | $8$ | $C_7:C_3$ | $[4/3]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.63.3t1.a.a | $1$ | $ 3^{2} \cdot 7 $ | 3.3.3969.2 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.63.3t1.a.b | $1$ | $ 3^{2} \cdot 7 $ | 3.3.3969.2 | $C_3$ (as 3T1) | $0$ | $1$ | |
3.1555848.7t3.a.a | $3$ | $ 2^{3} \cdot 3^{4} \cdot 7^{4}$ | 7.7.2420662999104.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ | |
3.1555848.7t3.a.b | $3$ | $ 2^{3} \cdot 3^{4} \cdot 7^{4}$ | 7.7.2420662999104.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ | |
* | 7.968...416.8t36.a.a | $7$ | $ 2^{8} \cdot 3^{8} \cdot 7^{8}$ | 8.0.9682651996416.1 | $C_2^3:(C_7: C_3)$ (as 8T36) | $1$ | $-1$ |
7.610...208.24t283.a.a | $7$ | $ 2^{8} \cdot 3^{10} \cdot 7^{9}$ | 8.0.9682651996416.1 | $C_2^3:(C_7: C_3)$ (as 8T36) | $0$ | $-1$ | |
7.610...208.24t283.a.b | $7$ | $ 2^{8} \cdot 3^{10} \cdot 7^{9}$ | 8.0.9682651996416.1 | $C_2^3:(C_7: C_3)$ (as 8T36) | $0$ | $-1$ |