Normalized defining polynomial
\( x^{8} + 4 x^{6} - 16 x^{5} + 122 x^{4} - 32 x^{3} + 300 x^{2} - 944 x + 693 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(966698534834176=2^{12}\cdot 17^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{176} a^{6} + \frac{5}{88} a^{5} + \frac{3}{176} a^{4} + \frac{1}{11} a^{3} + \frac{23}{176} a^{2} - \frac{5}{88} a - \frac{1}{16}$, $\frac{1}{352} a^{7} - \frac{1}{352} a^{6} - \frac{19}{352} a^{5} + \frac{27}{352} a^{4} + \frac{23}{352} a^{3} - \frac{87}{352} a^{2} - \frac{15}{32} a - \frac{9}{32}$
Class group and class number
$C_{24}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{32} a^{7} + \frac{3}{32} a^{6} + \frac{9}{32} a^{5} + \frac{3}{32} a^{4} + \frac{103}{32} a^{3} + \frac{293}{32} a^{2} + \frac{751}{32} a + \frac{533}{32} \), \( \frac{5}{2} a^{4} + 5 a^{2} - 20 a + \frac{31}{2} \), \( \frac{15927}{352} a^{7} + \frac{86621}{352} a^{6} + \frac{288983}{352} a^{5} + \frac{239109}{352} a^{4} - \frac{80271}{352} a^{3} - \frac{1133237}{352} a^{2} + \frac{47713}{352} a + \frac{108889}{32} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4952.93775628 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{697}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.17_41.2t1.1c1 | $1$ | $ 17 \cdot 41 $ | $x^{2} - x - 174$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 2.17_41.3t2.1c1 | $2$ | $ 17 \cdot 41 $ | $x^{3} - 7 x - 5$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| 3.2e6_17e2_41e2.6t8.2c1 | $3$ | $ 2^{6} \cdot 17^{2} \cdot 41^{2}$ | $x^{4} + 6 x^{2} - 8 x + 25$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_17_41.4t5.1c1 | $3$ | $ 2^{6} \cdot 17 \cdot 41 $ | $x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 3$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| 3.17e2_41e2.6t8.2c1 | $3$ | $ 17^{2} \cdot 41^{2}$ | $x^{4} - x^{3} + 2 x^{2} - x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_17_41.4t5.2c1 | $3$ | $ 2^{6} \cdot 17 \cdot 41 $ | $x^{4} + 6 x^{2} - 8 x + 25$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_17e2_41e2.6t8.1c1 | $3$ | $ 2^{6} \cdot 17^{2} \cdot 41^{2}$ | $x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 3$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| 3.17_41.4t5.1c1 | $3$ | $ 17 \cdot 41 $ | $x^{4} - x^{3} + 2 x^{2} - x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e12_17e3_41e3.8t34.1c1 | $6$ | $ 2^{12} \cdot 17^{3} \cdot 41^{3}$ | $x^{8} + 4 x^{6} - 16 x^{5} + 122 x^{4} - 32 x^{3} + 300 x^{2} - 944 x + 693$ | $V_4^2:S_3$ (as 8T34) | $1$ | $-2$ |