Normalized defining polynomial
\( x^{8} - 2x^{7} + 2x^{6} + 26x^{5} + 55x^{4} + 78x^{3} + 72x^{2} + 36x + 9 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(9475854336\) \(\medspace = 2^{12}\cdot 3^{4}\cdot 13^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.66\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}13^{1/2}\approx 17.663521732655695$ | ||
Ramified primes: | \(2\), \(3\), \(13\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{1479}a^{7}-\frac{8}{1479}a^{6}+\frac{50}{1479}a^{5}-\frac{274}{1479}a^{4}+\frac{220}{1479}a^{3}+\frac{79}{493}a^{2}+\frac{43}{493}a-\frac{246}{493}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{126}{493} a^{7} + \frac{1052}{1479} a^{6} - \frac{1645}{1479} a^{5} - \frac{8339}{1479} a^{4} - \frac{14633}{1479} a^{3} - \frac{19087}{1479} a^{2} - \frac{4915}{493} a - \frac{1668}{493} \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{367}{493}a^{7}-\frac{3385}{1479}a^{6}+\frac{5750}{1479}a^{5}+\frac{22720}{1479}a^{4}+\frac{35653}{1479}a^{3}+\frac{45989}{1479}a^{2}+\frac{8889}{493}a+\frac{2769}{493}$, $\frac{126}{493}a^{7}-\frac{1052}{1479}a^{6}+\frac{1645}{1479}a^{5}+\frac{8339}{1479}a^{4}+\frac{14633}{1479}a^{3}+\frac{19087}{1479}a^{2}+\frac{4422}{493}a+\frac{1668}{493}$, $\frac{23}{1479}a^{7}+\frac{103}{493}a^{6}-\frac{1315}{1479}a^{5}+\frac{1186}{493}a^{4}+\frac{6046}{1479}a^{3}+\frac{10381}{1479}a^{2}+\frac{3454}{493}a+\frac{1737}{493}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 33.215356646 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 33.215356646 \cdot 4}{4\cdot\sqrt{9475854336}}\cr\approx \mathstrut & 0.53180106825 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_4$ |
Character table for $D_4$ |
Intermediate fields
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{13})\), 4.2.24336.2 x2, 4.0.7488.4 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 siblings: | 4.2.24336.2, 4.0.7488.4 |
Minimal sibling: | 4.0.7488.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/17.1.0.1}{1} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.1.0.1}{1} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.13 | $x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
\(3\) | 3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(13\) | 13.4.2.1 | $x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
13.4.2.1 | $x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.52.2t1.a.a | $1$ | $ 2^{2} \cdot 13 $ | \(\Q(\sqrt{-13}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.1872.4t3.i.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 13 $ | 8.0.9475854336.4 | $D_4$ (as 8T4) | $1$ | $0$ |