Normalized defining polynomial
\( x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 24 x^{4} - 56 x^{3} - 17 x^{2} + 46 x + 19 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9475854336=2^{12}\cdot 3^{4}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6} - \frac{3}{13} a^{5} + \frac{4}{13} a^{4} - \frac{3}{13} a^{3} - \frac{6}{13} a^{2} - \frac{6}{13} a - \frac{2}{13}$, $\frac{1}{91} a^{7} - \frac{31}{91} a^{5} - \frac{17}{91} a^{4} - \frac{2}{91} a^{3} + \frac{41}{91} a^{2} - \frac{1}{13} a - \frac{45}{91}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6}{13} a^{6} - \frac{18}{13} a^{5} + \frac{11}{13} a^{4} + \frac{8}{13} a^{3} + \frac{159}{13} a^{2} - \frac{166}{13} a - \frac{129}{13} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90.6500778691 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 8T19):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3 : C_4 $ |
| Character table for $C_2^3 : C_4 $ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.7488.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3_13.2t1.1c1 | $1$ | $ 3 \cdot 13 $ | $x^{2} - x + 10$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.13.2t1.1c1 | $1$ | $ 13 $ | $x^{2} - x - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_3_13.4t1.2c1 | $1$ | $ 2^{3} \cdot 3 \cdot 13 $ | $x^{4} + 78 x^{2} + 468$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.2e3_13.4t1.1c1 | $1$ | $ 2^{3} \cdot 13 $ | $x^{4} - 26 x^{2} + 52$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e3_13.4t1.1c2 | $1$ | $ 2^{3} \cdot 13 $ | $x^{4} - 26 x^{2} + 52$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e3_3_13.4t1.2c2 | $1$ | $ 2^{3} \cdot 3 \cdot 13 $ | $x^{4} + 78 x^{2} + 468$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 2.3_13e2.4t3.2c1 | $2$ | $ 3 \cdot 13^{2}$ | $x^{4} - x^{3} + 2 x^{2} + 4 x + 16$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 2.2e6_3_13.4t3.8c1 | $2$ | $ 2^{6} \cdot 3 \cdot 13 $ | $x^{4} + 14 x^{2} + 52$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| * | 4.2e6_3e2_13e3.8t21.2c1 | $4$ | $ 2^{6} \cdot 3^{2} \cdot 13^{3}$ | $x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 24 x^{4} - 56 x^{3} - 17 x^{2} + 46 x + 19$ | $C_2^3 : C_4 $ (as 8T19) | $1$ | $0$ |