Properties

Label 8.0.937024000000.22
Degree $8$
Signature $[0, 4]$
Discriminant $2^{12}\cdot 5^{6}\cdot 11^{4}$
Root discriminant $31.37$
Ramified primes $2, 5, 11$
Class number $16$
Class group $[2, 2, 4]$
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![22801, 302, 2, -610, 311, -10, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 8*x^6 - 10*x^5 + 311*x^4 - 610*x^3 + 2*x^2 + 302*x + 22801)
 
gp: K = bnfinit(x^8 - 4*x^7 + 8*x^6 - 10*x^5 + 311*x^4 - 610*x^3 + 2*x^2 + 302*x + 22801, 1)
 

Normalized defining polynomial

\( x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 311 x^{4} - 610 x^{3} + 2 x^{2} + 302 x + 22801 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(937024000000=2^{12}\cdot 5^{6}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{11} a^{4} - \frac{2}{11} a^{3} + \frac{2}{11} a^{2} - \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{5} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{1661} a^{6} - \frac{3}{1661} a^{5} + \frac{5}{1661} a^{4} - \frac{5}{1661} a^{3} + \frac{457}{1661} a^{2} - \frac{455}{1661} a - \frac{1}{11}$, $\frac{1}{4021281} a^{7} + \frac{1207}{4021281} a^{6} + \frac{69610}{4021281} a^{5} + \frac{5743}{4021281} a^{4} - \frac{481}{365571} a^{3} + \frac{552364}{4021281} a^{2} + \frac{564283}{4021281} a + \frac{1073}{2421}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}$, which has order $16$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{10}{365571} a^{7} - \frac{35}{365571} a^{6} + \frac{1273}{365571} a^{5} - \frac{3095}{365571} a^{4} + \frac{7615}{365571} a^{3} - \frac{8345}{365571} a^{2} + \frac{183475}{365571} a - \frac{599}{2421} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 116.675641179 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(i, \sqrt{5})\), 4.0.968000.4 x2, 4.2.242000.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.14$x^{8} + 12 x^{4} + 144$$4$$2$$12$$D_4$$[2, 2]^{2}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$