Normalized defining polynomial
\( x^{8} - x^{7} + 618 x^{6} + 83834 x^{5} - 778259 x^{4} + 47319875 x^{3} + 1858422200 x^{2} - 29799043708 x + 1248004155440 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9196155263122253470427891561=41^{7}\cdot 241^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3129.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(9881=41\cdot 241\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{9881}(9632,·)$, $\chi_{9881}(1,·)$, $\chi_{9881}(9880,·)$, $\chi_{9881}(249,·)$, $\chi_{9881}(5754,·)$, $\chi_{9881}(2715,·)$, $\chi_{9881}(7166,·)$, $\chi_{9881}(4127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{280} a^{4} + \frac{11}{140} a^{3} + \frac{59}{280} a^{2} + \frac{19}{140} a$, $\frac{1}{280} a^{5} - \frac{1}{56} a^{3} + \frac{1}{70} a$, $\frac{1}{11200} a^{6} + \frac{17}{11200} a^{5} - \frac{17}{11200} a^{4} + \frac{1611}{11200} a^{3} + \frac{61}{700} a^{2} + \frac{1093}{2800} a + \frac{9}{20}$, $\frac{1}{111916903945724864000} a^{7} - \frac{2461694908654371}{55958451972862432000} a^{6} - \frac{3702406326471339}{2797922598643121600} a^{5} + \frac{4537747460237071}{7994064567551776000} a^{4} + \frac{8392248775548304787}{111916903945724864000} a^{3} + \frac{2922610733128757977}{27979225986431216000} a^{2} - \frac{1787281151801407401}{3997032283775888000} a - \frac{8214582133836373}{28550230598399200}$
Class group and class number
$C_{2}\times C_{4}\times C_{39374120}$, which has order $314992960$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 447136.275584 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{9881}) \), 4.4.964723144841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 241 | Data not computed | ||||||