Normalized defining polynomial
\( x^{8} - x^{7} + 618 x^{6} + 83834 x^{5} - 2319695 x^{4} - 33901945 x^{3} + 2025490148 x^{2} - 27841538560 x + 184031513600 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9196155263122253470427891561=41^{7}\cdot 241^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3129.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(9881=41\cdot 241\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{9881}(1,·)$, $\chi_{9881}(8706,·)$, $\chi_{9881}(2715,·)$, $\chi_{9881}(1438,·)$, $\chi_{9881}(1175,·)$, $\chi_{9881}(9880,·)$, $\chi_{9881}(8443,·)$, $\chi_{9881}(7166,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{40} a^{4} + \frac{1}{10} a^{3} - \frac{9}{40} a^{2} + \frac{1}{10} a$, $\frac{1}{1760} a^{5} + \frac{21}{1760} a^{4} - \frac{141}{1760} a^{3} + \frac{91}{1760} a^{2} + \frac{87}{440} a$, $\frac{1}{1316480} a^{6} + \frac{13}{82280} a^{5} + \frac{4621}{658240} a^{4} - \frac{32903}{329120} a^{3} - \frac{227099}{1316480} a^{2} - \frac{1995}{5984} a + \frac{7}{34}$, $\frac{1}{3798038596614592000} a^{7} + \frac{22641955133}{189901929830729600} a^{6} + \frac{400902695020389}{1899019298307296000} a^{5} - \frac{9214772595301077}{949509649153648000} a^{4} + \frac{19765205798194101}{223414035094976000} a^{3} + \frac{2036832260364267}{21579764753492000} a^{2} - \frac{126544227742753}{392359359154400} a - \frac{100602627339}{445862908130}$
Class group and class number
$C_{2}\times C_{4}\times C_{13867240}$, which has order $110937920$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 447136.275584 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{9881}) \), 4.4.964723144841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 241 | Data not computed | ||||||