Normalized defining polynomial
\( x^{8} - 4x^{7} + 2x^{6} - 10x^{5} + 112x^{4} - 272x^{3} + 341x^{2} - 434x + 343 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(9032601600\) \(\medspace = 2^{12}\cdot 3^{6}\cdot 5^{2}\cdot 11^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.56\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{3/4}5^{1/2}11^{1/2}\approx 47.81534341600945$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(11\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{7}a^{5}-\frac{1}{7}a^{4}+\frac{3}{7}a^{3}+\frac{2}{7}a^{2}-\frac{3}{7}a$, $\frac{1}{217}a^{6}+\frac{6}{217}a^{5}+\frac{3}{217}a^{4}+\frac{100}{217}a^{3}+\frac{67}{217}a^{2}-\frac{11}{31}a-\frac{6}{31}$, $\frac{1}{1519}a^{7}+\frac{2}{1519}a^{6}-\frac{3}{217}a^{5}+\frac{739}{1519}a^{4}+\frac{318}{1519}a^{3}-\frac{128}{1519}a^{2}-\frac{86}{217}a-\frac{1}{31}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $7$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{24}{217} a^{7} + \frac{52}{217} a^{6} + \frac{50}{217} a^{5} + \frac{327}{217} a^{4} - \frac{2096}{217} a^{3} + \frac{2673}{217} a^{2} - \frac{3110}{217} a + \frac{653}{31} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2}{1519}a^{7}+\frac{11}{1519}a^{6}-\frac{20}{1519}a^{4}-\frac{183}{1519}a^{3}+\frac{213}{1519}a^{2}-\frac{32}{217}a+\frac{23}{31}$, $\frac{5}{217}a^{7}-\frac{27}{217}a^{6}+\frac{2}{31}a^{5}-\frac{12}{217}a^{4}+\frac{649}{217}a^{3}-\frac{1786}{217}a^{2}+\frac{1854}{217}a-\frac{123}{31}$, $\frac{611}{1519}a^{7}-\frac{1319}{1519}a^{6}-\frac{167}{217}a^{5}-\frac{8322}{1519}a^{4}+\frac{52821}{1519}a^{3}-\frac{70081}{1519}a^{2}+\frac{1659}{31}a-\frac{2370}{31}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 126.781970892 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 126.781970892 \cdot 2}{6\cdot\sqrt{9032601600}}\cr\approx \mathstrut & 0.693025619758 \end{aligned}\]
Galois group
A solvable group of order 16 |
The 10 conjugacy class representatives for $Q_8:C_2$ |
Character table for $Q_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 16 |
Degree 8 siblings: | 8.4.27323619840000.1, 8.0.426931560000.8 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.1.0.1}{1} }^{8}$ | R | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
\(3\) | 3.8.6.1 | $x^{8} + 9$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(5\) | 5.4.2.2 | $x^{4} - 20 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
5.4.0.1 | $x^{4} + 4 x^{2} + 4 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(11\) | 11.4.2.2 | $x^{4} - 77 x^{2} + 242$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.1320.2t1.a.a | $1$ | $ 2^{3} \cdot 3 \cdot 5 \cdot 11 $ | \(\Q(\sqrt{330}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.440.2t1.b.a | $1$ | $ 2^{3} \cdot 5 \cdot 11 $ | \(\Q(\sqrt{-110}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.24.2t1.b.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{-6}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.165.2t1.a.a | $1$ | $ 3 \cdot 5 \cdot 11 $ | \(\Q(\sqrt{165}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.8.2t1.a.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{2}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.55.2t1.a.a | $1$ | $ 5 \cdot 11 $ | \(\Q(\sqrt{-55}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.3960.8t11.h.a | $2$ | $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $ | 8.0.9032601600.3 | $Q_8:C_2$ (as 8T11) | $0$ | $0$ |
* | 2.3960.8t11.h.b | $2$ | $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $ | 8.0.9032601600.3 | $Q_8:C_2$ (as 8T11) | $0$ | $0$ |