Properties

Label 8.0.8999178496.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{8}\cdot 7^{4}\cdot 11^{4}$
Root discriminant $17.55$
Ramified primes $2, 7, 11$
Class number $2$
Class group $[2]$
Galois group $C_2^3$ (as 8T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![401, 118, -76, -82, 37, 2, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 4*x^6 + 2*x^5 + 37*x^4 - 82*x^3 - 76*x^2 + 118*x + 401)
 
gp: K = bnfinit(x^8 - 4*x^7 + 4*x^6 + 2*x^5 + 37*x^4 - 82*x^3 - 76*x^2 + 118*x + 401, 1)
 

Normalized defining polynomial

\( x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 37 x^{4} - 82 x^{3} - 76 x^{2} + 118 x + 401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8999178496=2^{8}\cdot 7^{4}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(308=2^{2}\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(197,·)$, $\chi_{308}(265,·)$, $\chi_{308}(43,·)$, $\chi_{308}(111,·)$, $\chi_{308}(307,·)$, $\chi_{308}(153,·)$, $\chi_{308}(155,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{4} + \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{1}{6} a^{3} - \frac{5}{18} a^{2} - \frac{1}{2} a + \frac{7}{18}$, $\frac{1}{54} a^{6} + \frac{1}{27} a^{4} + \frac{2}{27} a^{3} + \frac{5}{27} a^{2} + \frac{11}{27} a - \frac{23}{54}$, $\frac{1}{1998} a^{7} + \frac{5}{666} a^{6} - \frac{7}{1998} a^{5} - \frac{10}{999} a^{4} - \frac{47}{1998} a^{3} - \frac{247}{999} a^{2} + \frac{5}{999} a + \frac{263}{666}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{333} a^{7} + \frac{7}{666} a^{6} - \frac{23}{666} a^{5} + \frac{20}{333} a^{4} - \frac{91}{666} a^{3} + \frac{50}{333} a^{2} - \frac{205}{666} a + \frac{29}{222} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 72.4184469969 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3$ (as 8T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_2^3$
Character table for $C_2^3$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(i, \sqrt{77})\), \(\Q(i, \sqrt{11})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{7}, \sqrt{11})\), \(\Q(\sqrt{-7}, \sqrt{-11})\), \(\Q(\sqrt{-7}, \sqrt{11})\), \(\Q(\sqrt{7}, \sqrt{-11})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ R R ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$