Normalized defining polynomial
\( x^{8} - 5 x^{6} - 3 x^{5} + 28 x^{4} - 12 x^{3} - 80 x^{2} + 256 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(89526025681=547^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{6} - \frac{1}{16} a^{5} - \frac{1}{32} a^{4} - \frac{1}{32} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{7} - \frac{1}{64} a^{6} - \frac{1}{128} a^{5} + \frac{31}{128} a^{4} + \frac{15}{64} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{7}{64} a^{7} - \frac{3}{16} a^{6} - \frac{19}{64} a^{5} + \frac{39}{64} a^{4} + \frac{11}{8} a^{3} - \frac{69}{16} a^{2} - \frac{3}{2} a + 9 \), \( \frac{1}{64} a^{7} - \frac{5}{64} a^{5} - \frac{3}{64} a^{4} + \frac{7}{16} a^{3} - \frac{3}{16} a^{2} - \frac{9}{4} a - 3 \), \( \frac{3}{64} a^{7} + \frac{1}{32} a^{6} - \frac{27}{64} a^{5} - \frac{27}{64} a^{4} + \frac{45}{32} a^{3} + 2 a^{2} - \frac{9}{4} a - 2 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 235.83141838 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\SL(2,3)$ (as 8T12):
| A solvable group of order 24 |
| The 7 conjugacy class representatives for $\SL(2,3)$ |
| Character table for $\SL(2,3)$ |
Intermediate fields
| 4.4.299209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 547 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.547.3t1.1c1 | $1$ | $ 547 $ | $x^{3} - x^{2} - 182 x + 81$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.547.3t1.1c2 | $1$ | $ 547 $ | $x^{3} - x^{2} - 182 x + 81$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.547e2.24t7.2c1 | $2$ | $ 547^{2}$ | $x^{8} - 5 x^{6} - 3 x^{5} + 28 x^{4} - 12 x^{3} - 80 x^{2} + 256$ | $\SL(2,3)$ (as 8T12) | $-1$ | $-2$ | |
| * | 2.547.8t12.1c1 | $2$ | $ 547 $ | $x^{8} - 5 x^{6} - 3 x^{5} + 28 x^{4} - 12 x^{3} - 80 x^{2} + 256$ | $\SL(2,3)$ (as 8T12) | $0$ | $-2$ |
| * | 2.547.8t12.1c2 | $2$ | $ 547 $ | $x^{8} - 5 x^{6} - 3 x^{5} + 28 x^{4} - 12 x^{3} - 80 x^{2} + 256$ | $\SL(2,3)$ (as 8T12) | $0$ | $-2$ |
| * | 3.547e2.4t4.1c1 | $3$ | $ 547^{2}$ | $x^{4} - 21 x^{2} - 3 x + 100$ | $A_4$ (as 4T4) | $1$ | $3$ |