Normalized defining polynomial
\( x^{8} - x^{7} + 1801 x^{6} - 53291 x^{5} + 5308046 x^{4} - 20768516 x^{3} + 3192104472 x^{2} + 52057482048 x + 374374573056 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(884137376053502406583563913=97^{7}\cdot 149^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2335.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(14453=97\cdot 149\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{432} a^{4} - \frac{17}{216} a^{3} + \frac{19}{432} a^{2} - \frac{3}{8} a - \frac{1}{3}$, $\frac{1}{1296} a^{5} - \frac{1}{1296} a^{4} + \frac{49}{1296} a^{3} + \frac{35}{432} a^{2} - \frac{5}{72} a + \frac{1}{3}$, $\frac{1}{23328} a^{6} + \frac{1}{7776} a^{5} - \frac{1}{864} a^{4} - \frac{59}{23328} a^{3} + \frac{79}{3888} a^{2} + \frac{7}{324} a - \frac{4}{27}$, $\frac{1}{4738028063483759970816} a^{7} - \frac{101506362472461563}{4738028063483759970816} a^{6} + \frac{164759677724305069}{1579342687827919990272} a^{5} - \frac{1909037976750310721}{4738028063483759970816} a^{4} - \frac{32184908683801214875}{592253507935469996352} a^{3} - \frac{132274791735625351}{394835671956979997568} a^{2} + \frac{4180376165257693069}{16451486331540833232} a - \frac{9512038001338481}{31158118052160669}$
Class group and class number
$C_{463033828}$, which has order $463033828$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79274.2426916 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.20262253273.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| $149$ | 149.8.6.3 | $x^{8} - 149 x^{4} + 66603$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |