Normalized defining polynomial
\( x^{8} - 3x^{7} - x^{6} + 11x^{5} - 6x^{4} - 10x^{3} + 9x^{2} - x + 1 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(8719893\)
\(\medspace = 3^{4}\cdot 7^{2}\cdot 13^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(7.37\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(7\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{17}a^{7}+\frac{2}{17}a^{6}-\frac{8}{17}a^{5}+\frac{5}{17}a^{4}+\frac{2}{17}a^{3}-\frac{8}{17}a-\frac{7}{17}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{1}{17} a^{7} + \frac{2}{17} a^{6} - \frac{8}{17} a^{5} - \frac{12}{17} a^{4} + \frac{36}{17} a^{3} + a^{2} - \frac{42}{17} a + \frac{10}{17} \)
(order $6$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{3}{17}a^{7}-\frac{11}{17}a^{6}-\frac{7}{17}a^{5}+\frac{49}{17}a^{4}-\frac{11}{17}a^{3}-4a^{2}+\frac{27}{17}a+\frac{13}{17}$, $\frac{4}{17}a^{7}-\frac{9}{17}a^{6}-\frac{15}{17}a^{5}+\frac{54}{17}a^{4}-\frac{9}{17}a^{3}-4a^{2}+\frac{53}{17}a-\frac{11}{17}$, $\frac{1}{17}a^{7}-\frac{15}{17}a^{6}+\frac{26}{17}a^{5}+\frac{39}{17}a^{4}-\frac{100}{17}a^{3}-a^{2}+\frac{94}{17}a-\frac{24}{17}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3.28851213295 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{0}\cdot(2\pi)^{4}\cdot 3.28851213295 \cdot 1}{6\cdot\sqrt{8719893}}\approx 0.289275793571$
Galois group
$C_4\wr C_2$ (as 8T17):
A solvable group of order 32 |
The 14 conjugacy class representatives for $C_4\wr C_2$ |
Character table for $C_4\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.117.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 8 sibling: | data not computed |
Degree 16 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | R | ${\href{/padicField/5.8.0.1}{8} }$ | R | ${\href{/padicField/11.8.0.1}{8} }$ | R | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
\(7\)
| 7.2.1.2 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.2.1.2 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.4.0.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(13\)
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
13.4.0.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.39.2t1.a.a | $1$ | $ 3 \cdot 13 $ | \(\Q(\sqrt{-39}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.273.4t1.a.a | $1$ | $ 3 \cdot 7 \cdot 13 $ | 4.0.968877.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
1.91.4t1.a.a | $1$ | $ 7 \cdot 13 $ | 4.4.107653.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
1.273.4t1.a.b | $1$ | $ 3 \cdot 7 \cdot 13 $ | 4.0.968877.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
1.91.4t1.a.b | $1$ | $ 7 \cdot 13 $ | 4.4.107653.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
2.24843.4t3.a.a | $2$ | $ 3 \cdot 7^{2} \cdot 13^{2}$ | 4.0.968877.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
* | 2.39.4t3.a.a | $2$ | $ 3 \cdot 13 $ | 4.0.117.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.273.8t17.c.a | $2$ | $ 3 \cdot 7 \cdot 13 $ | 8.0.8719893.1 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
* | 2.273.8t17.c.b | $2$ | $ 3 \cdot 7 \cdot 13 $ | 8.0.8719893.1 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
2.3549.8t17.c.a | $2$ | $ 3 \cdot 7 \cdot 13^{2}$ | 8.0.8719893.1 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ | |
2.3549.8t17.c.b | $2$ | $ 3 \cdot 7 \cdot 13^{2}$ | 8.0.8719893.1 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |