Normalized defining polynomial
\( x^{8} - 3 x^{7} + 8468 x^{6} - 150738 x^{5} + 22418861 x^{4} + 396498613 x^{3} - 32011251778 x^{2} - 848649683424 x + 28742837126528 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8656391633739689127939614209=113^{6}\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3105.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $113, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{112} a^{5} - \frac{1}{16} a^{4} - \frac{19}{112} a^{3} + \frac{1}{16} a^{2} + \frac{9}{56} a$, $\frac{1}{3136} a^{6} + \frac{3}{1568} a^{5} - \frac{55}{1568} a^{4} - \frac{29}{196} a^{3} + \frac{221}{3136} a^{2} + \frac{117}{1568} a + \frac{1}{28}$, $\frac{1}{19279557512084546593946863670144} a^{7} - \frac{135545511005376623443285219}{876343523276570299724857439552} a^{6} + \frac{20627678872014387742974391579}{9639778756042273296973431835072} a^{5} + \frac{26425498517643162288496392049}{438171761638285149862428719776} a^{4} - \frac{3914125601072771295834706453455}{19279557512084546593946863670144} a^{3} - \frac{771011358694950930956305354837}{9639778756042273296973431835072} a^{2} + \frac{222380831651346326754806970803}{2409944689010568324243357958768} a - \frac{18295432433157194007328915855}{43034726589474434361488534978}$
Class group and class number
$C_{2}\times C_{4522}\times C_{203490}$, which has order $1840363560$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8223.52656633 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{45313}) \), \(\Q(\sqrt{401}) \), \(\Q(\sqrt{113}) \), \(\Q(\sqrt{113}, \sqrt{401})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $113$ | 113.4.3.2 | $x^{4} - 1017$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 113.4.3.2 | $x^{4} - 1017$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 401 | Data not computed | ||||||