Normalized defining polynomial
\( x^{8} - x^{7} + 16128 x^{6} + 402233 x^{5} + 106055867 x^{4} - 194795156 x^{3} + 117877276000 x^{2} + \cdots + 988078947349328 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(81729569074669588344431934238657\)
\(\medspace = 193^{7}\cdot 449^{6}\)
|
| |
| Root discriminant: | \(9750.96\) |
| |
| Galois root discriminant: | $193^{7/8}449^{3/4}\approx 9750.960589105536$ | ||
| Ramified primes: |
\(193\), \(449\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{193}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | deg 16$^{8}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{16}a^{6}-\frac{1}{16}a^{5}-\frac{1}{4}a^{4}+\frac{5}{16}a^{3}-\frac{5}{16}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{37\cdots 96}a^{7}-\frac{10\cdots 87}{37\cdots 96}a^{6}+\frac{93\cdots 63}{18\cdots 48}a^{5}-\frac{49\cdots 91}{37\cdots 96}a^{4}-\frac{44\cdots 23}{37\cdots 96}a^{3}+\frac{18\cdots 57}{18\cdots 48}a^{2}+\frac{51\cdots 59}{93\cdots 24}a-\frac{11\cdots 03}{46\cdots 12}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{21931104}$, which has order $1403590656$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{21931104}$, which has order $1403590656$ (assuming GRH) |
| |
| Relative class number: | $14620736$ (assuming GRH) |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{38\cdots 17}{13\cdots 24}a^{7}-\frac{18\cdots 19}{13\cdots 24}a^{6}+\frac{76\cdots 81}{69\cdots 12}a^{5}-\frac{18\cdots 27}{13\cdots 24}a^{4}-\frac{14\cdots 31}{13\cdots 24}a^{3}-\frac{11\cdots 45}{69\cdots 12}a^{2}+\frac{79\cdots 71}{34\cdots 56}a-\frac{26\cdots 29}{17\cdots 28}$, $\frac{20\cdots 05}{13\cdots 24}a^{7}-\frac{44\cdots 51}{13\cdots 24}a^{6}-\frac{12\cdots 83}{69\cdots 12}a^{5}-\frac{44\cdots 47}{13\cdots 24}a^{4}+\frac{12\cdots 65}{13\cdots 24}a^{3}-\frac{10\cdots 17}{69\cdots 12}a^{2}+\frac{19\cdots 19}{34\cdots 56}a-\frac{52\cdots 17}{17\cdots 28}$, $\frac{78\cdots 09}{13\cdots 24}a^{7}-\frac{17\cdots 35}{13\cdots 24}a^{6}-\frac{49\cdots 49}{69\cdots 12}a^{5}-\frac{17\cdots 23}{13\cdots 24}a^{4}+\frac{38\cdots 37}{13\cdots 24}a^{3}-\frac{40\cdots 23}{69\cdots 12}a^{2}+\frac{78\cdots 39}{34\cdots 56}a-\frac{21\cdots 35}{17\cdots 28}$
|
| |
| Regulator: | \( 67953.8286804 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 67953.8286804 \cdot 1403590656}{2\cdot\sqrt{81729569074669588344431934238657}}\cr\approx \mathstrut & 8.22156079445 \end{aligned}\] (assuming GRH)
Galois group
$C_4\wr C_2$ (as 8T17):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{86657}) \), 4.4.1449321080257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | 8.0.81729569074669588344431934238657.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{4}$ | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(193\)
| 193.1.8.7a1.1 | $x^{8} + 193$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ |
|
\(449\)
| Deg $4$ | $4$ | $1$ | $3$ | |||
| Deg $4$ | $4$ | $1$ | $3$ |