Normalized defining polynomial
\( x^{8} + 1656 x^{6} + 856980 x^{4} + 141915888 x^{2} + 7486921729 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7923882339384426496=2^{24}\cdot 829^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $230.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 829$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(13264=2^{4}\cdot 829\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{13264}(1,·)$, $\chi_{13264}(6631,·)$, $\chi_{13264}(6633,·)$, $\chi_{13264}(13263,·)$, $\chi_{13264}(3315,·)$, $\chi_{13264}(3317,·)$, $\chi_{13264}(9947,·)$, $\chi_{13264}(9949,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{415} a^{4} - \frac{2}{415} a^{2} - \frac{207}{415}$, $\frac{1}{35908705} a^{5} - \frac{171812}{35908705} a^{3} + \frac{602373}{35908705} a$, $\frac{1}{35908705} a^{6} + \frac{1242}{35908705} a^{4} + \frac{51253}{7181741} a^{2} + \frac{1}{415}$, $\frac{1}{35908705} a^{7} - \frac{257923}{5129815} a^{3} + \frac{6022066}{35908705} a$
Class group and class number
$C_{146454}$, which has order $146454$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{35908705} a^{6} + \frac{1242}{35908705} a^{4} + \frac{51253}{7181741} a^{2} + \frac{1}{415} \), \( \frac{1}{35908705} a^{7} + \frac{207}{5129815} a^{5} + \frac{85698}{5129815} a^{3} + \frac{52960328}{35908705} a + 1 \), \( \frac{208}{35908705} a^{5} + \frac{171809}{35908705} a^{3} + \frac{17567469}{35908705} a + 1 \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19.534360053 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4$ (as 8T2):
| An abelian group of order 8 |
| The 8 conjugacy class representatives for $C_4\times C_2$ |
| Character table for $C_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1658}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-829}) \), \(\Q(\sqrt{2}, \sqrt{-829})\), \(\Q(\zeta_{16})^+\), 4.0.1407469568.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 829 | Data not computed | ||||||